Question

Use the method of matching to find the first terms in the outer and inner solutions of

$$\varepsilon y'' + y' = 1, \ y(0) = \alpha, \ y(1) = \beta.$$

given that a boundary layer of width $O(\varepsilon)$ exists near the origin. Hence write down the one-term composite expansion. Compare thus with the exact solution.

Answer

$$\varepsilon y'' + y' = 1, \ y(0) = \alpha, \ y(1) = \beta$$

Assume that the boundary layer exists near x = 0 of width $O(\varepsilon) \leftarrow$ This needs to be justified really but we follow lead from the question.

$$\underline{\text{OUTER}}\ y = y_0(x) + \varepsilon y_1(x) + O(\varepsilon^2)$$

$$\varepsilon y_0'' + y_0' + \varepsilon y_1' = 1 + O(\varepsilon^2)$$

Balance at

$$O(\varepsilon^0): y_0' = 1 \Rightarrow y_0 = x + A$$

Boundary data: only relevant one is $y(1) = \beta$. (0 is in the boundary layer).

$$\Rightarrow y_0(1) = \beta$$
 so $\underline{y_0} = \beta - 1 + \underline{x}$

INNER

Assuming $O(\varepsilon)$ boundary layer near x=0, set $X=\frac{x}{\varepsilon}$ as inner variable.

$$\partial_x = \frac{\partial X}{\partial x} \partial_X = \frac{1}{\varepsilon} \partial_X \text{ etc. with } y(\varepsilon X; \varepsilon) = Y(X, \varepsilon)$$

$$\frac{1}{\varepsilon}Y''(X,\varepsilon) + \frac{1}{\varepsilon}Y'(X,\varepsilon) = 1$$

Therefore
$$Y''^{\varepsilon} + Y' - \varepsilon = 0$$
 with $Y(0) = \alpha$

2nd order equation and only one boundary condition \Rightarrow matching is needed to find 2nd arbitrary const.

Try regular ansatz:
$$Y(X;\varepsilon) = Y_0(X) + \varepsilon Y_1(\varepsilon) + O(\varepsilon^2)$$

$$O(\varepsilon^0)Y_0'' + Y_0' = 0; Y_0(0) = \alpha$$

$$\overline{\longrightarrow Y_0^(X)} = A + Ce^{-X}$$
 where A and C are arbitrary constants.

Therefore $\alpha = A + C$, can only find 1 constant. Pick A say.

$$A = \alpha - c$$

Therefore
$$Y_0(X) = (\alpha - c) + ce^{-X}$$

Match up to get value of c using Van Dyke.

One term outer expansion $= \beta - 1 + x$ Rewritten in inner variable $= \beta - 1 + \varepsilon x$ Expanded for $\varepsilon \to o^+ = \beta - 1 + \varepsilon x$ One term $O(\varepsilon^0) = \beta - 1$ (*) One term inner expansion $= \alpha - c + ce^{-X}$ Rewritten in outer variable $= \alpha - c + ce^{-\frac{x}{\varepsilon}}$ Expanded for $\varepsilon \to 0^+ = \alpha - c$ $+ \exp$. small term in ε One term $O(\varepsilon^0) = \alpha - c$ (**) (*) and(**) must be equal: $\Rightarrow \beta - 1 + \alpha - c$ or $c = \alpha - \beta + 1$ Therefore outer 1-term is: $y(x;\varepsilon) = \beta - 1 + x$ Inner 1-term is $Y(X;\varepsilon) = (\alpha - \beta + 1)e^{-\frac{x}{\varepsilon}} + (\beta - 1)$ Composite is:

$$y^{comp} = y^{outer} + y^{inner} - \text{inner limit of } y^{outer}$$

$$= \beta - 1 + x + (\alpha - \beta + 1)e^{-\frac{x}{\varepsilon}} + (\beta - 1) - (\beta - 1) + \cdots$$

$$= (\beta - 1) + x + (\alpha - \beta + 1)e^{-\frac{x}{\varepsilon}} + \cdots, \quad \varepsilon \to 0^{+}$$

Exact solution is given by $y = \underbrace{y^{CF}}_{(1)} + \underbrace{y^{PI}}_{(2)}$

(1) solves $\varepsilon y'' + y' = 0$

(2) PI of
$$\varepsilon y'' + y' = 1 \underline{y}^{PI} = x$$

After using boundary conditions we get

$$y = \frac{x + (\beta - 1) - \alpha e^{-\frac{1}{\varepsilon}} + (\alpha - \beta + 1)e^{-\frac{x}{\varepsilon}}}{1 - e^{-\frac{1}{\varepsilon}}} \text{ exactly}$$

so as $\varepsilon \to 0^+$, $e^{-\frac{1}{\varepsilon}}$ is exp. small with respect to $e^{-\frac{x}{\varepsilon}}$ $x \in [0,1)$ so $y \sim x + (\beta - 1) + (x - \beta + 1)e^{-\frac{x}{\varepsilon}} + \exp$. small terms $\sqrt{\sqrt{ }}$