Question

Use the method of matching to find the first terms in the outer and inner solutions of

$$
\varepsilon y^{\prime \prime}+y^{\prime}=1, y(0)=\alpha, y(1)=\beta
$$

given that a boundary layer of width $O(\varepsilon)$ exists near the origin. Hence write down the one-term composite expansion. Compare thus with the exact solution.

Answer

$\varepsilon y^{\prime \prime}+y^{\prime}=1, y(0)=\alpha, y(1)=\beta$
Assume that the boundary layer exists near $x=0$ of width $O(\varepsilon) \leftarrow$ This needs to be justified really but we follow lead from the question.
OUTER $y=y_{0}(x)+\varepsilon y_{1}(x)+O\left(\varepsilon^{2}\right)$

$$
\varepsilon y_{0}^{\prime \prime}+y_{0}^{\prime}+\varepsilon y_{1}^{\prime}=1+O\left(\varepsilon^{2}\right)
$$

Balance at
$O\left(\varepsilon^{0}\right): y_{0}^{\prime}=1 \Rightarrow y_{0}=x+A$
Boundary data: only relevant one is $y(1)=\beta$. (0 is in the boundary layer).

$$
\Rightarrow y_{0}(1)=\beta \text { so } \underline{y_{0}}=\beta-1+\mathrm{x}
$$

INNER
Assuming $O(\varepsilon)$ boundary layer near $x=0$, set $X=\frac{x}{\varepsilon}$ as inner variable.
$\partial_{x}=\frac{\partial X}{\partial x} \partial_{X}=\frac{1}{\varepsilon} \partial_{X}$ etc. with $y(\varepsilon X ; \varepsilon)=Y(X, \varepsilon)$
Equation becomes:
$\frac{1}{\varepsilon} Y^{\prime \prime}(X, \varepsilon)+\frac{1}{\varepsilon} Y^{\prime}(X, \varepsilon)=1$
$\stackrel{\varepsilon}{\text { Therefore }} Y^{\prime \prime}{ }^{\varepsilon}+Y^{\prime}-\varepsilon=0$ with $Y(0)=\alpha$
2nd order equation and only one boundary condition \Rightarrow matching is needed to find 2 nd arbitrary const.
Try regular ansatz: $Y(X ; \varepsilon)=Y_{0}(X)+\varepsilon Y_{1}(\varepsilon)+O\left(\varepsilon^{2}\right)$
$O\left(\varepsilon^{0}\right) Y_{0}^{\prime \prime}+Y_{0}^{\prime}=0 ; \quad Y_{0}(0)=\alpha$
$\left.\rightarrow Y_{0}^{(} X\right)=A+C e^{-X}$ where A and C are arbitrary constants.
Therefore $\alpha=A+C$, can only find 1 constant. Pick A say.
$A=\alpha-c$
Therefore $Y_{0}(X)=(\alpha-c)+c e^{-X}$
Match up to get value of c using Van Dyke.

One term outer expansion $=\beta-1+x$
Rewritten in inner variable $=\beta-1+\varepsilon x$
Expanded for $\varepsilon \rightarrow o^{+} \quad=\beta-1+\varepsilon x$
One term $O\left(\varepsilon^{0}\right) \quad=\beta-1(\star)$
One term inner expansion $=\alpha-c+c e^{-X}$
Rewritten in outer variable $=\alpha-c+c e^{-\frac{x}{\varepsilon}}$
Expanded for $\varepsilon \rightarrow 0^{+} \quad=\alpha-c$ + exp. small term in ε
One term $O\left(\varepsilon^{0}\right) \quad=\alpha-c(\star \star)$
$(\star) \operatorname{and}(\star \star)$ must be equal:
$\Rightarrow \beta-1+\alpha-c$ or $c=\alpha-\beta+1$
Therefore outer 1-term is: $y(x ; \varepsilon)=\beta-1+x$
Inner 1-term is $Y(X ; \varepsilon)=(\alpha-\beta+1) e^{-\frac{x}{\varepsilon}}+(\beta-1)$
Composite is:

$$
\begin{aligned}
y^{\text {comp }} & =y^{\text {outer }}+y^{\text {inner }}-\text { inner limit of } y^{\text {outer }} \\
& =\beta-1+x+(\alpha-\beta+1) e^{-\frac{x}{\varepsilon}}+(\beta-1)-(\beta-1)+\cdots \\
& =(\beta-1)+x+(\alpha-\beta+1) e^{-\frac{x}{\varepsilon}}+\cdots, \quad \varepsilon \rightarrow 0^{+}
\end{aligned}
$$

Exact solution is given by $y=\underbrace{y^{C F}}+\underbrace{y^{P I}}$
(1) (2)
(1) solves $\varepsilon y^{\prime \prime}+y^{\prime}=0$
(2) PI of $\varepsilon y^{\prime \prime}+y^{\prime}=1 y^{P I}=x$

After using boundary conditions we get

$$
y=\frac{x+(\beta-1)-\alpha e^{-\frac{1}{\varepsilon}}+(\alpha-\beta+1) e^{-\frac{x}{\varepsilon}}}{1-e^{-\frac{1}{\varepsilon}}} \text { exactly }
$$

so as $\varepsilon \rightarrow 0^{+}, e^{-\frac{1}{\varepsilon}}$ is exp. small with respect to $e^{-\frac{x}{\varepsilon}} \quad x \in[0,1)$ so $y \sim x+(\beta-1)+(x-\beta+1) e^{-\frac{x}{\varepsilon}}+$ exp. small terms $\sqrt{ } \sqrt{ }$

