Question

Find the general solution of the differential equation

$$
y^{\prime}+y^{2}=1
$$

by separation of variables. Examine the same equation by dominant balance as $x \rightarrow+\infty$, comparing the results with the exact solution.

Answer
$y^{\prime}+y^{2}=1 \Rightarrow y^{\prime}=1-y^{2} \Rightarrow \frac{y^{\prime}}{1-y^{2}}=1$
Therefore $\int \frac{d y}{1-y^{2}}=\int d x \Rightarrow y=\frac{1-A e^{-2 x}}{1+A e^{-2 x}} \quad A=$ const
Dominant balance as $x \rightarrow+\infty$: Try
$\underline{y^{\prime}=1} \Rightarrow y=x+c \Rightarrow y^{2}=O\left(x^{2}\right)$ so $y^{\prime}=o\left(y^{2}\right)$. Inconsistent.
$y^{\prime}=y^{2} \Rightarrow \int \frac{y^{\prime}}{y^{2}}=\int d x \Rightarrow-\frac{1}{y}=x+c \Rightarrow y=-\frac{1}{x+c}=o(1)$ as $x \rightarrow+\infty$.
Inconsistent.
$y^{2}=1 \Rightarrow y= \pm 1 \quad y^{\prime}=0=o(1)$ as $x \rightarrow \infty!$
This is the balance.
Therefore $y \sim \pm 1$ as $x \rightarrow \infty$.
Second order balance: $y=+1+y_{1}$ where $y_{1}=o(1) *$
(Take +1 only)

$$
\begin{array}{ll}
& \left(1+y_{1}\right)^{\prime}+\left(1+y_{1}\right)^{2}=1 \\
\text { Then } & y_{1}^{\prime}+1+2 y_{1}+y_{1}^{2}=1 \\
& y_{1}^{\prime}+2 y_{1}+y_{1}^{2}=0
\end{array}
$$

Balance
$\underline{y_{1}^{\prime}=-2 y_{1}} \Rightarrow \int \frac{y_{1}^{\prime}}{y^{\prime}}=-2 \int d x \Rightarrow y_{1}=B e^{-2 x} \Rightarrow y_{1}^{2}=O\left(e^{-4 x}\right)=o\left(e^{-2 x}\right) \rightarrow$ consistent.

NB Other choice of -1 leads to inconsistency
$\rightarrow y \sim-1 \Rightarrow y_{1}=O\left(e^{2 x}\right)=o\left(e^{4 x}\right)$
Check others:
$\underline{y_{1}=-y_{1}^{2}} \Rightarrow \int \frac{y_{1}^{\prime}}{y_{1}^{2}}=-\int d x \Rightarrow-\frac{1}{y_{1}^{\prime}}=-x+c \Rightarrow y_{1}=O\left(\frac{1}{x}\right) \quad x \rightarrow+\infty$.
Hence $y_{1}^{2}=o\left(y_{1}\right)$ as $x \rightarrow+\infty$. INCONSISTENT.
$\underline{2 y_{1}=-y_{1}^{2}} \Rightarrow y_{1}=0$ (gives an exact solution: $\underline{y= \pm 1} \Rightarrow y^{\prime}=0$ and $y^{2}=1$) or $y_{1}=-2$. (This is not $o(1)$ as assumed \star)

Therefore we get either $y= \pm 1$ exactly or $y \sim 1-B e^{-2 x} \quad x \rightarrow+\infty$ which is consistent with the expansion of the exact result if $B=2 A($ as $x \rightarrow+\infty)$.

