Question

A solution in descending powers of x is sought for the equation

$$
y^{\prime \prime}+y=\frac{1}{x}, x \rightarrow+\infty
$$

Find the first few terms by direct substitution of the ansatz

$$
y(x) \sim \sum_{r=0}^{\infty} \frac{a_{r}}{x^{r}}
$$

Answer
$y^{\prime \prime}+y=\frac{1}{x}(1) x \rightarrow+\infty$
If $y \sim \sum_{r=0}^{\infty} \frac{a_{r}}{x^{r}}$ then $\begin{aligned} y^{\prime} & \sim \sum_{r=0}^{\infty}-r \frac{a_{r}}{x^{r+1}} \\ y^{\prime \prime} & \sim \sum_{r=0}^{\infty} \frac{+r(r+1) a_{r}}{x^{r+2}}\end{aligned}$
Ignore Poincaré and differentiation of asymptotics. We're doing formal maths! Hence in (1):
$\sum_{r=0}^{\infty} \frac{r(r+1) a_{r}}{x^{r+2}}+\sum_{r=0}^{\infty} \frac{a_{r}}{x^{r}}=\frac{1}{x}$
We balance at like powers of x.

$$
\begin{array}{ll}
O\left(x^{0}\right): & a_{0}=0 \\
O\left(x^{-1}\right): & a_{1}=1 \\
O\left(x^{-2}\right): & a_{2}=0 \\
O\left(x^{-3}\right): & 1 \cdot 2 \cdot a_{1}+a_{3}=0 \Rightarrow a_{3}=-2 a_{1}=-2 \\
O\left(x^{-4}\right): & 2 \cdot 3 \cdot a_{2}+a_{4}=0 \Rightarrow a_{4}=-6 a_{2}=0 \\
O\left(x^{-5}\right): & 3 \cdot 4 \cdot a_{3}+a_{5}=0 \Rightarrow a_{5}=-12 a_{3}=+24
\end{array}
$$

Spot the pattern:
for $r=2 n, a_{r}=0$
$r=2 n+1, a_{2 n+1}=-(2 n-1)(2 n) a_{2 n-1} \quad(n \geq 1)$
$a_{1}=1 \quad(n=0)$
This will, in principle, determine all coefficients.
The series diverges (by ratio test) for all x.

