QUESTION

(a) An investor wishes to trade in options on an asset whose current price one year from the maturity date of an option is $\$ 25$, the exercise price of the option is $\$ 20$, the risk-free interest rate is 5% per annum and the asset volatility is 20% per annum. Calculate by what amount the asset price has to change for the purchaser of a European call option to break even giving your answer to 4 decimal places?
(b) Write down the call-put parity formula for European options. Hence repeat part (a) but for a European put.
(c) Sketch the qualitative behaviour of the European call and put values over the lifetime of the option as a function of the underlying asset price.
(d) Calculate the initial price of the call option in part (a) if the asset pays a continuous dividend of $D S$ where S is the asset price and $D=0.01$.

You may assume that the solution of the Black-Scholes equation for a European call option, paying no dividends, is given by,

$$
\begin{gathered}
c(S, t)=S N\left(d_{1}\right)-K \exp (-r(T-t)) N\left(d_{2}\right), \\
d_{1}=\frac{\log \left(\frac{S}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \\
d_{2}=\frac{\log \left(\frac{S}{K}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} .
\end{gathered}
$$

ANSWER
(a) $T=1, S_{0}=25, K=20, r=0.05, \sigma=0.2$

For the holder of a Eurocall, the asset price must rise by the following to break even:

Payoff at $t=T$.
Therefore the price must rise to $K+C$ for the holder to break even. If the initial asset price is S_{0}, requires final asset price is $K+C_{0}$ so the rise must be $K+C_{0}-S_{0}$ Therefore we need to know the initial premium at S_{0}.
Use the formula given at $t=0$.

$$
\begin{aligned}
C\left(S_{0}, 0\right) & =S_{0} N\left(d_{1}(0)\right)-K e^{-r T} N\left(d_{2}(0)\right) \\
d_{1}(0) & =\frac{\left(\log \left(\frac{S_{0}}{K}\right)+\left(r+\frac{\sigma^{2}}{2} T\right)\right)}{\sigma \sqrt{T}} \\
d_{2}(0) & =\frac{\left(\log \left(\frac{S_{0}}{K}\right)+\left(r-\frac{\sigma^{2}}{2} T\right)\right)}{\sigma \sqrt{T}}
\end{aligned}
$$

Feed in the above data to get

$$
\left.\begin{array}{l}
d_{1}=1.47 \\
d_{2}=1.27
\end{array}\right\} \text { to } 2 \text { d.p. }
$$

We need to find $N(1.47)$ and $N(1.27)$. From the tables, $N(1.47)=$ $0.9297, N(1.27)=0.8980$

$$
C(S, 0)=25 \times 0.9292-20 e^{-0.05} \times 0.8980=6.1459
$$

Therefore to break even they need a new price of $K+C-0=20+$ $6.1459=26.1459$

Therefore the current price needs to rise by $K+C_{0}-S=1.1459$.
(b) The call-put parity formula is

$$
C(S, t)-P(S<t)=S-K e^{-r(T-t)}
$$

Therefore

$$
\begin{aligned}
P\left(S_{0}, 0\right) & =C\left(s_{0}, 0\right)-S_{0}+K e^{-r T} \\
& =1.1459-25+20 e^{-0.05} \\
& =0.1705
\end{aligned}
$$

So need price to fall to $K-P_{0}$ to break even $=20-0.1705=19.8295$
i.e. needs to fall by $25-19.8295=5.1705$.
(c)

(d) Result of part (a) changes by converting $r \rightarrow r-D$ (as per example in lecture notes) in all equations. Thus the effective interest rate is $0.05-0.01=0.04$

$$
d_{1}(0)=\frac{\left(\log \left(\frac{S_{0}}{K}\right)+\left(r-D+\frac{\sigma^{2}}{2}\right) T\right)}{\sigma \sqrt{T}}
$$

etc.
With

$$
\begin{aligned}
C(S, t) & =S e^{-D(T-t)} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right) \\
d_{1}(0) & =1.42 \\
d_{2}(0) & =1.22 \\
C\left(s_{0}, 0\right) & =25 e^{-0.01} N(1.42)-2 o e^{-0.05} N(1.22) \\
N(1.42) & =0.9222 \\
N(1.22) & =0.8888 \\
C\left(S_{0}, 0\right) & =22.8256-16.9091=5.9165
\end{aligned}
$$

