Question

Use Laplace transforms to solve the following systems of equations:

(a)

$$x' = y + e^t$$

$$y' = -2x + 3y + 2$$

with initial conditions x(0) = 2, y(0) = 2.

(b)

$$x' = 2x + y + te^{2t}$$
$$y' = -4x + 2y - e^{2t}$$

with initial conditions x(0) = 1, y(0) = 1.

Answer

(a) Taking the Laplace transform of the equations gives:

$$sX - 2 = Y + \frac{1}{s - 1} \tag{1}$$

$$sY - 2 = -2X + 3Y + \frac{2}{s} \tag{2}$$

From (1) we get $X = \frac{Y}{s} + \frac{1}{s(s-1)} + \frac{2}{s}$

Substituting in (2) gives $sY - 2 = -\frac{2Y}{s} - \frac{2}{s(s-1)} - \frac{4}{s} + 3Y + \frac{2}{s}$.

Rearranging and multiplying by s^2 gives

$$(s^2 - 3s + 2)Y = 2s - \frac{2}{s-1} - 2$$
 which gives

 $Y = \frac{2}{s-2} - \frac{2}{(s-1)^2(s-2)}$. On taking partial fractions this simplifies to

$$Y = \frac{2}{s-1} + \frac{2}{(s-1)^2}$$
. Hence $y(t) = 2e^t + 2te^t$.

We now rewrite the second differential equation as $x = \frac{1}{2}(3y + 2 - y')$ and substitute for y(t) to obtain

$$x(t) = e^t + 2te^t + 1.$$

(b) Taking the Laplace transform of the equations gives:

$$sX - 1 = 2X + Y + \frac{1}{(s-2)^2}$$
 (1)

$$sY - 1 = -4X + 2Y - \frac{1}{(s-2)} \tag{2}$$

Rearranging gives

$$(s-2)X - Y = 1 + \frac{1}{(s-2)^2}$$
 (3)

$$4X + (s-2)Y = 1 - \frac{1}{(s-2)} \tag{4}$$

$$(s-2)(3) + (4) \Rightarrow [4 + (s-2)^{2}]X = 1 + s - 2$$

$$\Rightarrow X = \frac{1}{2} \frac{2}{(s-2)^{2} + 4} + \frac{s-2}{(s-2)^{2} + 4}$$

$$\Rightarrow x(t) = \frac{1}{2} e^{2t} \sin 2t + e^{2t} \cos 2t.$$

But from the first differential equation $y=x'-2x-te^{2t}$ and substituting for x(t) gives

$$y(t) = -2e^{2t}\sin 2t + e^{2t}\cos 2t - te^{2t}.$$