QUESTION

For each of the following matrices A find an orthogonal matrix P such that $P^{t} A P$ is diagonal:

$$
\left[\begin{array}{rr}
10 & 2 \\
2 & 7
\end{array}\right] \quad\left[\begin{array}{lll}
4 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 4
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

ANSWER
First matrix:

Eigenvalue	6	normalised eigenvector	$\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}}\end{array}\right]$
Eigenvalue	11	normalised eigenvector	$\left[\begin{array}{c}\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]$

Second matrix:
$\left.\begin{array}{lll}\text { Eigenvalue } & 1 & \text { normalised eigenvector } \\ \text { Eigenvalue } & 3 & \text { normalised eigenvector }\end{array} \begin{array}{c}\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right]$

Third matrix:
The slick way to do the question is as follows.
Clearly $\lambda=-1$ is an eigenvalue but rank $(A+I)=1$, so $\operatorname{null}(A+I)=$ 3. Hence -1 is a triple eigenvalue and (as the matrix is symmetric) the eigenspace is three-dimensional. The other eigenvalue is 3 (use the fact that the sum of the eigenvalues equals the trace or notice that the sum of entries in each row equals 3).
The eigenvalue -1 has eigenspace $w+x+y+z=0$ so three mutually orthogonal eigenvectors in this space are required. In general one can choose any three independant eigenvectors and then use Gram-Schmidt to get an orthogonal set, but in the present case it is not hard to spot three orthogonal vectors.

Eigenvalue -1 ; normalised eigenvectors $\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right],\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$.

The eigenvalue 3 has normalised eigenvector

