
QUESTION
For each of the following matrices A find an orthogonal matrix P such that
P tAP is diagonal:
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ANSWER
First matrix:

Eigenvalue 6 normalised eigenvector
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Eigenvalue 11 normalised eigenvector

[

2
√

5
1
√

5

]

Second matrix:

Eigenvalue 1 normalised eigenvector
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Eigenvalue 3 normalised eigenvector
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Eigenvalue 7 normalised eigenvector
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Third matrix:
The slick way to do the question is as follows.

Clearly λ = −1 is an eigenvalue but rank (A + I) = 1, so null(A + I) =
3. Hence −1 is a triple eigenvalue and (as the matrix is symmetric) the
eigenspace is three-dimensional. The other eigenvalue is 3 (use the fact that
the sum of the eigenvalues equals the trace or notice that the sum of entries
in each row equals 3).
The eigenvalue −1 has eigenspace w + x + y + z = 0 so three mutually
orthogonal eigenvectors in this space are required. In general one can choose
any three independant eigenvectors and then use Gram-Schmidt to get an
orthogonal set, but in the present case it is not hard to spot three orthogonal
vectors.
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Eigenvalue −1; normalised eigenvectors
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The eigenvalue 3 has normalised eigenvector











1

2
1

2
1

2
1

2











2


