
Question

The series scavenger hunt: for each of the infinite series given below, do
the following:

• Determine whether the series converges absolutely, converges condi-
tionally, or diverges;

• if the series converges, determine its limit, where possible.

1.
∑∞

n=0
2n−1

3n ;

2.
∑∞

n=0(1.01)
n;

3.
∑∞

n=1(
e
10
)n;

4.
∑∞

n=1
1

n2+n+1
;

5.
∑∞

n=1
1

n+
√
n
;

6.
∑∞

n=1
1

1+3n ;

7.
∑∞

n=2
10n2

n3−1
;

8.
∑∞

n=1
1√

37n3+3
;

9.
∑∞

n=1

√
n

n2+n
;

10.
∑∞

n=2
2

ln(n)
;

11.
∑∞

n=1
sin2(n)
n2+1

;

12.
∑∞

n=1
n+2n

n+3n ;

13.
∑∞

n=2
1

n2 ln(n)
;

14.
∑∞

n=1
n3+1
n4+2

;

15.
∑∞

n=1
1

n+n3/2 ;

16.
∑∞

n=1
10n2

n4+1
;

17.
∑∞

n=2
n2−n
n4+2

;

18.
∑∞

n=1
1√
n2+1

;
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19.
∑∞

n=1
1

3+5n ;

20.
∑∞

n=2
1

n−ln(n)
;

21.
∑∞

n=1
cos2(n)

3n ;

22.
∑∞

n=1
1

2n+3n ;

23.
∑∞

n=1
1

n(1+
√

n) ;

24.
∑∞

n=1 1/(2
n(n+ 1));

25.
∑∞

n=1 n!/(n
2en);

26.
∑∞

n=2

√
n/(3n ln(n));

27.
∑∞

n=2(2n)!/(n!)
3;

28.
∑∞

n=1(1− (−1)n)/n4;

29.
∑∞

n=1(2 + cos(n))/(n+ ln(n));

30.
∑∞

n=3 1/(n ln(n)
√

ln(ln(n)));

31.
∑∞

n=1 n
n/(πnn!);

32.
∑∞

n=1 2
n+1/nn;

33.
∑∞

n=1(−1)n−1/
√
n;

34.
∑∞

n=1 cos(πn)/((n+ 1) ln(n+ 1));

35.
∑∞

n=1(−1)n(n2 − 1)/(n2 + 1);

36.
∑∞

n=1(−1)n/(nπn);

37.
∑∞

n=1(−1)n(20n2 − n− 1)/(n3 + n2 + 33);

38.
∑∞

n=1 n!/(−100)n;

39.
∑∞

n=3 1/(n ln(n)(ln(ln(n)))
2);

40.
∑∞

n=1(1 + (−1)n)/√n;

41.
∑∞

n=1 e
n cos2(n)/(1 + πn);

42.
∑∞

n=2 n
4/n!;
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43.
∑∞

n=1(2n)!6
n/(3n)!;

44.
∑∞

n=1 n
1002n/

√
n!;

45.
∑∞

n=3(1 + n!)/(1 + n)!;

46.
∑∞

n=1 2
2n(n!)2/(2n)!;

47.
∑∞

n=1(−1)n/(n2 + ln(n));

48.
∑∞

n=1(−1)2n/2n;

49.
∑∞

n=1(−2)n/n!;

50.
∑∞

n=0−n/(n2 + 1);

51.
∑∞

n=1 100 cos(nπ)/(2n+ 3);

52.
∑∞

n=10 sin((n+ 1/2)π)/ ln(ln(n));

53.
∑∞

n=1(2n)!/(2
2n(n!)2);

54.
∑∞

n=1(n/(n+ 1))n
2
;

55.
∑∞

n=1 1/(1 + 2 + · · ·+ n);

56.
∑∞

n=1 ln(n)/(2n
3 − 1);

57.
∑∞

n=1 sin(n)/n
2;

58.
∑∞

n=1(−1)n(n− 1)/n;

59.
∑∞

n=1(−1)n23n/7n;

60.
∑∞

n=1 cos(n)/n
4;

61.
∑∞

n=1(−1)n3n/(n(2n + 1));

62.
∑∞

n=1(−1)n−1n/(n2 + 1);

63.
∑∞

n=2(−1)n−1/(n ln2(n));

64.
∑∞

n=1(−1)n−12n/n2;

65.
∑∞

n=1(−1)n sin(
√
n)/n3/2;

66.
∑∞

n=1 n
4e−n

2
;

67.
∑∞

n=1 sin(nπ/2)/n;
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68.
∑∞

n=2 1/(ln(n))
8;

69.
∑∞

n=13 1/(n ln(n)(ln(ln(n)))
p), where p > 0 is an arbitrary positive real

number;

Answer

We make implicit use of the fact that convergence and absolute convergence
are the same for series with positive terms.

1. converges absolutely: we could apply the ratio test, but we do not
need to use such heavy machinary. Instead, we note that

∞
∑

n=0

2n−1

3n
=

1

2

∞
∑

n=0

2n

3n
=

1

2

∞
∑

n=0

(

2

3

)n

=
1

2

1

(1− 2/3)
=

3

2
,

since
∑∞

n=0
2n

3n is a convergent geometric series.

2. diverges: this is a geometric series, and since 1.01 > 1, it is a divergent
geometric series.

3. converges absolutely: this is a convergent geometric series, since
e
10
< 1, and it converges to

∞
∑

n=1

(

e

10

)n

=
∞
∑

n=0

(

e

10

)n

−1 = 1

1− e/10
−1 = 10

10− e
−10− e

10− e
=

e

10− e
.

4. converges absolutely: we use the second comparison test: since n2+
n+ 1 > n2 for all n ≥ 1, we have that 1

n2+n+1
< 1

n2 for all n ≥ 1. Since
∑∞

n=1
1
n2 converges, we have that

∑∞
n=1

1
n2+n+1

converges.

5. diverges: note that for n ≥ 1, we have that n ≥ √
n, and so n +√

n ≤ 2n. Therefore, 1
n+
√
n
≥ 1

2n
for n ≥ 1. Since the harmonic series

∑∞
n=1

1
n
diverges, its multiple

∑∞
n=1

1
2n

diverges, and hence by the first
comparison test the series

∑∞
n=1 1/(n+

√
n) diverges.

6. converges absolutely: since 1 + 3n > 3n for all n ≥ 1, we have that
1

1+3n < 1
3n for all n ≥ 1. Since

∑∞
n=1

1
3n =

∑∞
n=1

(

1
3

)n
converges, the

second convergence test yields that
∑∞

n=1 1/(1 + 3n) converges.

7. diverges: we’ll use the limit comparison test: for large values of n, it
seems that 10n2

n3−1
behaves like a constant multiple of 1

n
, and in fact

lim
n→∞

10n2/(n3 − 1)

1/n
= lim

n→∞

10n3

n3 − 1
= 10 = L.
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Since the limit exists and 0 < L = 10 <∞, and since
∑∞

n=1
1
n
diverges,

the limit comparison test yields that
∑∞

n=2 10n
2/(n3 − 1) diverges.

8. converges absolutely: again we’ll use the limit comparison test: for
large values of n, it seems that 1/

√
37n3 + 3 behaves like 1/n3/2, and

in fact

lim
n→∞

1/
√
37n3 + 3

1/n3/2
= lim

n→∞

n3/2

√
37n3 + 3

= lim
n→∞

1
√

37 + 3/n3
=

1√
37

= L.

Since the limit exists and 0 < L = 1√
37
<∞, and since

∑∞
n=1

1
n3/2 con-

verges, the limit comparison test yields that
∑∞

n=1 1/
√
37n3 + 3 con-

verges.

9. converges absolutely: we start this one with a bit of algebra, namely
√
n

n2 + n
<

√
n

n2
=

1

n3/2
.

From note 1., we know that
∑∞

n=1 1/n
3/2 converges, and so by the second

comparison test,
∑∞

n=1

√
n/(n2 + n) converges.

10. diverges: since ln(n) < n for all n ≥ 2, we have that 1
ln(n)

> 1
n
for

all n ≥ 2, and so
∑∞

n=2 2/ ln(n) diverges by the first comparison test,
comparing it to the harmonic series

∑∞
n=1

1
n
.

11. converges absolutely: since 0 < sin2(n) ≤ 1 for all n ≥ 1, we have
that

0 <
sin2(n)

n2 + 1
≤ 1

n2 + 1
<

1

n2

for all n ≥ 1. Since we are dealing with a series with positive terms and
since

∑∞
n=1

1
n2 converges by note 1., we have that

∑∞
n=1 sin

2(n)/(n2+1)
converges by the second comparison test.

12. converges absolutely: for this series, we start with a bit of algebraic
massage:

n+ 2n

n+ 3n
<

n+ 2n

3n
<

2n + 2n

3n
= 2

(

2

3

)n

.

So, the second comparison test, comparing with the convergent geo-

metric series 2
∑∞

n=0

(

2
3

)n
yields that

∑∞
n=1(n+2n)/(n+3n) converges.

13. converges absolutely: since 1/(n2 ln(n)) < 1/n2 for n ≥ 3, since
ln(n) ≥ 1 for n ≥ 3, we have by the second comparison test that
∑∞

n=2 1/(n
2 ln(n)) converges.
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14. diverges: for large values of n, it seems that the nth in the series is
approximately 1

n
, and so we might guess that the series diverges by the

limit comparison test. To check this guess, we need to evaluate

lim
n→∞

(n3 + 1)/(n4 + 2)

1/n
= lim

n→∞

n4 + n

n4 + 2
= 1 = L.

Since the limit exists and since 0 < L = 1 <∞, and since the harmonic
series

∑∞
n=1

1
n
diverges, we have that

∑∞
n=1(n

3 +1)/(n4 +2) diverges by
the limit comparison test.

15. converges absolutely: since 1
n+n3/2 < 1

n3/2 for all n ≥ 1 and since
∑∞

n=1
1

n3/2 converges by note 1., we have that
∑∞

n=1 1/(n + n3/2) con-
verges by the second comparison test.

16. converges absolutely: for large values of n, it seems that the nth

term in this series is approximately equal to 10
n2 , and so we might guess

that this series converges by use of the limit comparison test. To verify
this guess, we calculate

lim
n→∞

10n2/(n4 + 1)

10/n2
= lim

n→∞

n4

n4 + 1
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since
∑∞

n=1
10
n2

converges by note 1., we have that
∑∞

n=1 10n
2/(n4+1) converges by the

limit comparison test.

17. converges absolutely: for large values of n, it seems again that the
nth term in this series is approximately equal to 1

n2 , and so we might
guess that this series converges by use of the limit comparison test. To
verify this guess, we calculate

lim
n→∞

(n2 − n)/(n4 + 2)

1/n2
= lim

n→∞

n4 − n3

n4 + 2
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since
∑∞

n=1
1
n2

converges by note 1., we have that
∑∞

n=2(n
2−n)/(n4 +2) converges by

the limit comparison test.

18. diverges: for large values of n, it seems that the nth term of this series
is approximately equal to 1

n
, and so we might guess that this series then

diverges by the limit comparison test. To verify this guess, we calculate

lim
n→∞

1/
√
n2 + 1

1/n
= lim

n→∞

n√
n2 + 1

= lim
n→∞

n

n
√

1 + 1/n2
= 1 = L.
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Since the limit exists and since 0 < L = 1 < ∞, and since
∑∞

n=1
1
n

diverges by note 1., we have that
∑∞

n=2 1/
√
n2 + 1 diverges by the limit

comparison test.

19. converges absolutely: since

1

3 + 5n
<

1

5n
=
(

1

5

)n

,

and since
∑∞

n=0

(

1
5

)n
converges, the second comparison test yields that

∑∞
n=1 1/(3 + 5n) converges.

20. diverges: first note that since ln(n) < n for all n ≥ 2, this is a series of
positive terms. Also, n− ln(n) < n, and so 1/(n− ln(n)) > 1/n. Hence,
since

∑∞
n=1

1
n
diverges, we have that

∑∞
n=2 1/(n− ln(n)) diverges, by the

first comparison test.

21. converges absolutely: since 0 < cos2(n) ≤ 1 for all N ≥ 1, we have
that cos2(n)/3n < 1/3n. Since

∑∞
n=0

1
3n is a convergent geometric series,

we have by the second comparison test that
∑∞

n=1 cos
2(n)/3n converges.

22. converges absolutely: since 1/(2n + 3n) < 1/2n and since
∑∞

n=0
1
2n

converges, the second comparison test yields that
∑∞

n=1 1/(2
n + 3n)

converges.

23. converges absolutely: since 1 +
√
n ≥ 2 for n ≥ 1, we have that

n1+
√
n ≥ n2 for n ≥ 1, and so 1/n(1+

√
n) ≤ 1/n2 for n ≥ 1. Hence, since

∑∞
n=1

1
n2 converges by note 1., we have by the second comparison test

that
∑∞

n=1 1/n
(1+

√
n) converges.

24. converges absolutely: since 2n(n + 1) > 2n for n ≥ 1, we have that
1/(2n(n+1)) < 1/2n for n ≥ 1. Since

∑∞
n=1

1
2n is a convergent geometric

series, we have by the second comparison test that
∑∞

n=1 1/(2
n(n+ 1))

converges.

25. diverges: since factorials are involved, we first see whether the ratio
test gives us any information, and so we evaluate

lim
n→∞

(n+ 1)!/((n+ 1)2en+1)

n!/(n2en)
= lim

n→∞

(n+ 1)!n2en

n!(n+ 1)2en+1
= lim

n→∞

n2

(n+ 1)2
n+ 1

e
=∞,

and since ∞ > 1, the ratio test implies that
∑∞

n=1 n!/(n
2en) diverges.
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[Though it’s not obvious how, we could also have applied the nth term
test for divergence, since for large values of n we have

n!

n2en
=

(n− 1)(n− 2)!

nen
=

n− 1

n

n− 2

e
· · · 2

e

1

e2
>

n− 1

n

2

e

1

e2
>

1

e3
.

We simplified by noting that the middle terms n−2
e
, . . . , 3

e
are all greater

than 1 and that n−1
n

> 1
2
for n large. Hence, limn→∞

n!
n2en 6= 0.]

26. converges absolutely: there is not an obvious comparison to make,
and so we try the ratio test:

lim
n→∞

√
n+ 1/(3n+1 ln(n+ 1))√

n/(3n ln(n))
= lim

n→∞

1

3

ln(n)

ln(n+ 1)

√

n+ 1

n
=

1

3
,

since limn→∞
ln(n)

ln(n+1)
= 1, for instance using l’Hopital’s rule. Since

1
3
< 1, the ratio test yields that

∑∞
n=1

√
n/(3n ln(n)) converges.

27. converges absolutely: since there are factorials involved, we first try
the ratio test:

lim
n→∞

(2(n+ 1))!/((n+ 1)!)3

(2n)!/(n!)3
= lim

n→∞

(2n+ 2)(2n+ 1)

(n+ 1)3
= 0 < 1,

and so the ratio test yields that
∑∞

n=2(2n)!/(n!)
3 converges.

28. converges absolutely: note that the numerator of each term is either
0 or 2, and so this is a series with non-negative terms. Also, (1 −
(−1)n)/n4 < 2/n4 for all n ≥ 1 and

∑∞
n=1

1
n4 converges by note 1., and

so by the second comparison test
∑∞

n=1(1− (−1)n)/n4 converges.

29. diverges: we start with a bit of algebraic simplification:

2 + cos(n)

n+ ln(n)
≥ 1

n+ ln(n)
>

1

2n
.

(The first inequality holds since 2+cos(n) ≥ 2+(−1) = 1 for all n ≥ 1,
and the second inequality holds since ln(n) < n for all n ≥ 1, and so
n + ln(n) < n + n = 2n.) Since

∑∞
n=1

1
2n

diverges (as it is a constant
multiple of the harmonic series), the first comparison test yields that
∑∞

n=1(2 + cos(n))/(n+ ln(n)) diverges.

30. diverges: for this one, we use the integral test. Set

f(x) =
1

x ln(x)
√

ln(ln(x))
,
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so that an = f(n) for all n ≥ 3. (The restriction that n ≥ 3 is to

ensure that
√

ln(ln(n)) is well defined.) In order to apply the integral

test, we need to know that f(x) is decreasing, which involves calculating
a derivative and checking its sign:

f ′(x) =
−
(

ln(x)
√

ln(ln(x)) +
√

ln(ln(x)) + x ln(x) 1

2
√

ln(ln(x))

1
x ln(x)

)

(x ln(x)
√

ln(ln(x)))2
< 0.

Hence, the integral test can be applied, and says that
∑∞

n=3 1/(n ln(n)
√

ln(ln(n)))

converges if and only if
∫∞
3 f(x)dx = limM→∞

∫M
3 f(x)dx exists. So, we

calculate:

lim
M→∞

∫ M

3
f(x)dx = lim

M→∞

∫ M

3

1

x ln(x)
√

ln(ln(x))
dx = lim

M→∞
2
√

ln(ln(x))
∣

∣

∣

M
3 ,

which diverges, and so
∑∞

n=3 1/(n ln(n)
√

ln(ln(n))) diverges.

31. converges absolutely: try the ratio test, since there are factorials
about:

lim
n→∞

(n+ 1)(n+1)/(π(n+1)(n+ 1)!)

nn/(πnn!)
= lim

n→∞

(

n+ 1

n

)n 1

π
= lim

n→∞

(

1 +
1

n

)n 1

π
=

e

π
= L.

Since the limit exists and since L < 1, the ratio test yields that
∑∞

n=1 n
n/(πnn!) converges.

32. converges absolutely: since both the numerator and the denomina-
tor are raised to (essentially) the same power, we try the root test, and
so need to calculate:

lim
n→∞

(

2n+1

nn

)1/n

= lim
n→∞

21/n 2

n
= L = 0

(since limn→∞ 21/n = 20 = 1). Since the limit exists and since L < 1,
the root test yields that

∑∞
n=1 2

n+1/nn converges.

33. converges conditionally: we first test for absolute convergence, by
considering the related series

∑∞
n=1 |(−1)n−1/

√
n| = ∑∞

n=1 1/
√
n, which

diverges by note 1.

We now test for convergence. This is an alternating series, and so we
use the alternating series test: write

∞
∑

n=1

(−1)n−1

√
n

= (−1)
∞
∑

n=1

(−1)n√
n

= (−1)
∞
∑

n=1

(−1)nan,
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where an = 1√
n
> 0 for all n ≥ 1. Since limn→∞ an = limn→∞

1√
n
= 0

and since an+1 =
1√
n+1

< 1√
n
= an for all n ≥ 1, the alternating series

test applies and yields that this series converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

34. converges conditionally: we first check for absolute convergence,
that is, convergence of the associated series

∑∞
n=1 | cos(πn)/((n+1) ln(n+

1))| = ∑∞
n=1 1/((n+1) ln(n+1)). For this series, we apply the integral

test, with f(x) = 1/((x+ 1) ln(x+ 1)). Since

f ′(x) =
−
(

ln(x+ 1) + (x+ 1) 1
x+1

)

(x+ 1)2(ln(x+ 1))2
=

−(ln(x+ 1) + 1)

(x+ 1)2(ln(x+ 1))2
< 0

for x ≥ 1, the integral test yields that the series converges if and only
if
∫∞
1 f(x)dx = limM→∞

∫M
1 f(x)dx exists, so we calculate:

lim
M→∞

∫ M

1

1

(x+ 1) ln(x+ 1)
dx = lim

M→∞
ln(ln(x+1))

∣

∣

∣

M
1 = lim

M→∞
(ln(ln(M+1))−ln(ln(2))),

which diverges (very very slowly). So, the series does not converge
absolutely.

We now test for convergence. Since cos(πn) = (−1)n, this is an al-
ternating series, and we start with the alternating series test. Since
(n+1) ln(n+1) < (n+2) ln(n+2) for all n ≥ 1, we have that 1/((n+
1) ln(n + 1)) > 1/((n + 2) ln(n + 2)) for n ≥ 1. Since limn→∞ 1/((n +
1) ln(n + 1)) = 0 (and since 1/((n + 1) ln(n + 1)) > 0 for n ≥ 1), the
alternating series test applies and yields that the series converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

35. diverges: since limn→∞(n
2−1)/(n2+1) = 1, we have that limn→∞(−1)n(n2−

1)/(n2 +1) does not exist, and so
∑∞

n=1(−1)n(n2− 1)/(n2 +1) diverges
by the nth term test for divergence.

36. converges absolutely: we first test for absolute convergence, by
considering the associated series

∑∞
n=1 |(−1)n/(nπn)| =

∑∞
n=1 1/(nπ

n).
Since 1/(nπn) ≤ 1/πn for n ≥ 1 and since

∑∞
n=0

1
πn converges, the

second comparison test yields that
∑∞

n=1 1/(nπ
n) converges, and hence

that
∑∞

n=1(−1)n/(nπn) converges absolutely.
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37. converges conditionally: we first test for absolute convergence, that
is, convergence of the associated series

∑∞
n=1 |(−1)n(20n2−n−1)/(n3+

n2+33)| = ∑∞
n=1(20n

2−n−1)/(n3+n2+33). Since the nth term looks
like a constant multiple of 1

n
for large n, let’s try the limit comparison

test:

lim
n→∞

(20n2 − n− 1)/(n3 + n2 + 33)

1/n
= lim

n→∞

20n3 − n2 − n

n3 + n2 + 33
= 20 = L.

Since the limit exists and 0 < L <∞, the series being considered here
diverges, since the harmonic series converges. So, the original series
does not converge absolutely.

We now test for convergence. The series
∑∞

n=1(−1)n(20n2−n−1)/(n3+
n2 + 33) =

∑∞
n=1(−1)nan is an alternating series, since 20n2−n−1

n3+n2+33
> 0

for n ≥ 1, and so let’s check whether it satisfies the conditions of the
alternating series test. Since (20n2−n− 1)/(n3 +n2 +33) is a rational
function and the denominator has higher degree than the numerator,
we have that limn→∞(20n

2−n−1)/(n3+n2+33) = 0. All that remains
to check is whether the an are monotonically decreasing. For this, let
f(x) = (20x2 − x − 1)/(x3 + x2 + 33), so that f(n) = an, and check
that it’s decreasing, which involves calculating f ′(x):

f ′(x) =
−20x4 + 2x3 + 4x2 + 1322x− 33

(x3 + x2 + 33)2
< 0

for all x greater than any of the roots of the numerator. So, the alter-
nating series test applies, and yields that this series converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

38. diverges: note that, for n ≥ 101, we have

n!

100n
=

n(n− 1) · · · 1
100n

=
n

100

n− 1

100
· · · 101

100

100

100

99

100
· · · 1

100
>

99

100
· · · 1

100
,

and so limn→∞ n!/(−100)n does not exist. Hence, by the nth term test
for divergence, the series diverges.

39. converges absolutely: we apply the integral test, with the function
f(x) = 1

x ln(x)(ln(ln(x)))2
. First, we check to see that f(x) is decreasing,

by calculating its derivative:

f ′(x) =
−(ln(x)(ln(ln(x)))2 + (ln(ln(x)))2 + 1)

(x ln(x)(ln(ln(x)))4
< 0
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for x ≥ 2 (and the denominator is non-zero for x ≥ 3). So, now we
need to calculate
∫ ∞

3
f(x)dx = lim

M→∞

∫ M

3

1

x ln(x)(ln(ln(x))2
dx

= lim
M→∞

1

ln(ln(x)

∣

∣

∣

M
3 = lim

M→∞

(

−1
ln(ln(M))

+
1

ln(ln(3))

)

=
1

ln(ln(3))
.

Since the limit converges,
∑∞

n=3 1/(n ln(n)(ln(ln(n)))
2) converges abso-

lutely.

40. diverges: we start with a bit of arithmetic, noting that the numerator
satisfies: (1 + (−1)n) = 0 for n odd and (1 + (−1)n) = 2 for n even.
Hence, the terms of the series are non-zero only for n even, so let’s
make the substitution n = 2k for k ≥ 1. Then, for n even, we have
that

1 + (−1)n√
n

=
2√
2k

=

√
2√
k
>

1√
k
.

Hence, by the first comparison test and note 1., we have that
∑∞

n=1(1+
(−1)n)/√n diverges.

41. converges absolutely: again, we begin with a bit of algebra, simpli-
fying the nth in the series by noting that

en cos2(n)

1 + πn
≤ en

1 + πn
≤ en

πn
=
(

e

π

)n

,

where the first inequality follows from cos2(n) ≤ 1 for all n ≥ 1.
Since

∑∞
n=0(e/π)

n converges, the second comparison test yields that
∑∞

n=1 e
n cos2(n)/(1 + πn) converges.

42. converges absolutely: since there are factorials involved, let’s first
try the ratio test:

lim
n→∞

(n+ 1)4/(n+ 1)!

n4/n!
= lim

n→∞

(

n+ 1

n

)4 n!

(n+ 1)!
== lim

n→∞

(

n+ 1

n

)4 1

n+ 1
= 0 = L.

Since the limit exists and since L < 1, the ratio test yields that the
series converges.

43. converges absolutely: again, since there are factorials involved, we
first try the ratio test:

lim
n→∞

(2(n+ 1))!6(n+1)/(3(n+ 1))!

(2n)!6n/(3n)!
= lim

n→∞

6(2n+ 2)(2n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)
= 0 = L.

12



Since the limit exists and since L < 1, the ratio test yields that the
series converges.

44. converges absolutely: and yet again, since there are factorials in-
volved, our first attempt should be with the ratio test:

lim
n→∞

(n+ 1)1002(n+1)/
√

(n+ 1)!

n1002n/
√
n!

= lim
n→∞

(

n+ 1

n

)100 2√
n+ 1

= 0 = L.

Since the limit exists and since L < 1, the ratio test yields that this
series converges.

45. diverges: since there are factorials involved, we first try the ratio test:

lim
n→∞

(1 + (n+ 1)!)/(1 + (n+ 1))!

(1 + n!)/(1 + n)!
= lim

n→∞

1 + (n+ 1)!

(1 + n!)(n+ 2)
= lim

n→∞

1/n! + n+ 1

(1/n! + 1)(n+ 2)
= 1,

and so the ratio test gives no information. (This discussion was put in
to remind you that the ratio test doesn’t always work with factorials.)

Hmm. Notice that when n is large, 1 + n! is very nearly equal to n!,
and so (1+n!)/(n+1)! is very nearly equal to n!/(n+1)! = 1/(n+1).
So, let’s try the limit comparison test with 1/(n+ 1):

lim
n→∞

(1 + n!)/(1 + n)!

1/(n+ 1)
= lim

n→∞

(n+ 1)(1 + n!)

(n+ 1)!
= lim

n→∞

1 + n!

n!
= 1 = L.

Since the limit exists and since
∑∞

n=0 1/(n + 1) diverges (as it’s the
harmonic series less the leading term), the series

∑∞
n=3(1+n!)/(1+n)!

diverges by the limit comparison test.

46. diverges: again, since there are factorials involved, we first try the
ratio test:

lim
n→∞

22(n+1)((n+ 1)!)2

(2(n+ 1))!

(2n)!

22n(n!)2
= lim

n→∞

4(n+ 1)2

(2n+ 1)(2n+ 2)
= 1,

and so the ratio test yields no information.

So, let’s explicitly try the nth term test for divergence. We start with
a bit of algebraic massage, namely:

22n(n!)2 = (2n · n!)2 = ((2n) · (2n− 2) · (2n− 4) · · · 4 · 2)2,

13



and so

22n(n!)2

(2n)!
=

(2n) · (2n) · (2n− 2) · (2n− 2) · · · 2 · 2
(2n) · (2n− 1) · (2n− 2) · (2n− 3) · · · 2 · 1 =

(2n) · (2n− 2) · · · 2
(2n− 1) · (2n− 3) · · · 1 > 1.

In particular, the limit limn→∞ 22n(n!)2/(2n)! cannot be zero, and so
the nth term test yields that

∑∞
n=1 2

2n(n!)2/(2n)! diverges.

47. converges absolutely: we first check for absolute convergence, namely
the convergence of the series

∑∞
n=1 |(−1)n/(n2+ln(n))| = ∑∞

n=1 1/(n
2+

ln(n)). Since n2 + ln(n) > n2, we have that 1/(n2 + ln(n)) < 1/n2, and
so by the second comparison test, the series

∑∞
n=1 1/(n

2 + ln(n)) con-
verges. That is, the original series

∑∞
n=1(−1)n/(n2 + ln(n)) converges

absolutely.

48. converges absolutely: we begin with a bit of algebraic massage,
noting that

∞
∑

n=1

(−1)2n
2n

=
∞
∑

n=1

((−1)2)n
2n

=
∞
∑

n=1

1

2n
=

∞
∑

n=1

(

1

2

)n

.

This is a convergent geometric series, converging to

1

1− 1
2

− 1 = 1.

(The subtraction of 1 arises from the fact that the starting index in
this series is not 0, so that

∞
∑

n=1

1

2n
=

∞
∑

n=0

1

2n
−
(

1

2

)0

=
∞
∑

n=0

1

2n
− 1 = 2− 1 = 1.)

49. converges absolutely: we first check for absolute convergence, namely
the convergence of the series

∑∞
n=1 |(−2)n/n!| =

∑∞
n=1 2

n/n!. Since
there are factorials involved, we make use of the ratio test:

lim
n→∞

2(n+1)/(n+ 1)!

2n/n!
= lim

n→∞

2

n+ 1
= 0 = L.

Since this limit exists and satisfies L < 1, the ratio test yields that
∑∞

n=1 2
n/n! converges, and hence that the original series

∑∞
n=1(−2)n/n!

converges absolutely.
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50. diverges: first, note that this is not an alternating series, but is a
series with all non-positive terms. Hence, for this series, convergence
and absolute convergence are equivalent, as they are for series with
non-negative terms.

Now, for n large, n/(n2+1) is approximately equal to 1/n, and so let’s
try the limit comparison test with 1

n
. So, we calculate:

lim
n→∞

n/(n2 + 1)

1/n
= lim

n→∞

n2

n2 + 1
= 1 = L.

Since the limit exists and since 0 < L = 1 <∞, and since
∑∞

n=1−1/n
diverges (as it is a constant multiple of the harmonic series), the limit
comparison test yields that the series

∑∞
n=1−n/(n2 + 1) diverges.

51. converges conditionally: we start by noting that cos(nπ) = (−1)n,
and so this is an alternating series. So, we first check for absolute con-
vergence, namely the convergence of the series

∑∞
n=1 |100 cos(nπ)/(2n+

3)| = ∑∞
n=1 100/(2n + 3). Here, there are many tests that yield di-

vergence, for instance we may use the limit comparison test with the
harmonic series

∑∞
n=1

1
n
:

lim
n→∞

100/(2n+ 3)

1/n
= lim

n→∞

100n

2n+ 3
= 50 = L;

since this limit exists and satisfies 0 < L = 50 < ∞, and since
the harmonic series diverges, the limit comparison test yields that
∑∞

n=1 100/(2n+ 3) diverges.

However, since 100
2(n+1)+3

= 100
2n+5

< 100
2n+3

and since limn→∞
100

2n+3
= 0, the

alternating series test yields that
∑∞

n=1 100 cos(nπ)/(2n+3) converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

52. converges conditionally: as before, we begin by simplifying the ex-
pression of each term. Here, note that sin((n + 1/2)π) = (−1)n, and
so this is an alternating series. As always, we first check for abso-
lute convergence, namely the convergence of the series

∑∞
n=10 | sin((n+

1/2)π)/ ln(ln(n))| = ∑∞
n=10 1/ ln(ln(n)). Since n > ln(ln(n)) for all

n ≥ 10, we have that 1/ ln(ln(n)) > 1/n for all n ≥ 10, and so the
series

∑∞
n=10 1/ ln(ln(n)) diverges by the first comparison test. That is,

the original series does not converge absolutely.
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We are now ready to determine convergence of the original series. As
this is an alternating series, let’s check whether the hypthoses of the
alternating series test are satisfied. Since 1/ ln(ln(n)) > 1/ ln(ln(n+1))
and since limn→∞ 1/ ln(ln(n)) = 0 (since limn→∞ ln(ln(n)) = ∞), the
alternating series test applies to this series, and yields that the series
∑∞

n=10 sin((n+ 1/2)π)/ ln(ln(n)) converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

53. diverges: similar to the algebraic manipulation we performed on the
series whose terms were the reciprocals of the terms in this series, we
calculate:

(2n)!

22n(n!)2
=

(2n)!

(2nn!)2

=
(2n) · (2n− 1) · (2n− 2) · (2n− 3) · · · 2 · 1
(2n) · (2n) · (2n− 2) · (2n− 2) · · · 2 · 2

=
(2n− 1) · (2n− 3) · · · 3 · 1
(2n) · (2n− 2) · · · 4 · 2

=
1

2n

2n− 1

2n− 2

2n− 3

2n− 4
· · · 5

4

3

2
>

1

2n
.

Hence, since the series
∑∞

n=1
1
2n

diverges (as it is a constant multiple of
the harmonic series), the first comparison test yields that

∑∞
n=1(2n)!/(2

2n(n!)2)
diverges.

54. converges absolutely: since each term is a power, we first attempt
to apply the root test, and so we calculate:

lim
n→∞

[

(

n

n+ 1

)n2]1/n

= lim
n→∞

(

n

n+ 1

)n

= lim
n→∞

(

n+ 1

n

)−n

=
1

limn→∞

(

1 + 1
n

)n =
1

e
= L.

Since the limit exists and since L < 1, the root test yields that
∑∞

n=1(n/(n+
1))n

2
converges.

55. converges absolutely: we begin with a bit of algebraic manipulation,
namely noting that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for n ≥ 1, and so

1

1 + 2 + · · ·+ n
=

2

n(n+ 1)
<

2

n2
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for n ≥ 1. Since
∑∞

n=1 1/n
2 converges, by note 1., the second compari-

son test yields that
∑∞

n=1 1/(1 + 2 + · · ·+ n) converges.

56. converges absolutely: we begin with a bit of simplification, namely
noting that

0 ≤ ln(n)

2n3 − 1
≤ n

2n3 − 1
≤ n

n3
=

1

n2

for n ≥ 1. (The first inequality follows since ln(n) ≤ n for n ≥ 1,
while the second inequality follows since 2n3−1 ≥ n3 for n ≥ 1.) Since
∑∞

n=1 1/n
2 converges by note 1., the second comparison test yields that

∑∞
n=1 ln(n)/(2n

3 − 1) converges.

57. converges absolutely: note that this is not an alternating series,
even though the terms are not all of the same sign (since sin(n) be-
haves a bit strangely). However, we still begin testing for convergence
by testing for absolute convergence, namely the convergence of the se-
ries

∑∞
n=1 | sin(n)/n2|. Since | sin(n)| ≤ 1 for all n ≥ 1, and since

∑∞
n=1 1/n

2 converges by note 1., the second comparison test yields that
∑∞

n=1 sin(n)/n
2 converges absolutely.

58. diverges: since limn→∞(n− 1)/n = 1, we have that limn→∞(−1)n(n−
1)/n does not exist (since for large n, it is oscillating between numbers
near 1 and numbers near −1). Since this limit does not exist, the nth

term test for divergence yields that
∑∞

n=1(−1)n(n− 1)/n diverges.

59. diverges: we can rewrite this series as a geometric series, to whit:

∞
∑

n=1

(−1)n23n

7n
=

∞
∑

n=1

(−8)n
7n

=
∞
∑

n=1

(−8
7

)n

.

Since | − 8
7
| ≥ 1, this is a divergent geometric series.

60. converges absolutely: this is similar to a series we handled a few
problems ago. Even though the terms are not of the same sign and
are not of alternating signs, we still begin our check for convergence
by checking for absolute convergence. Since | cos(n)/n4| ≤ 1/n4 (since
| cos(n)| ≤ 1 for all n ≥ 1) and since

∑∞
n=1 1/n

4 converges, the second
comparison test yields that

∑∞
n=1 cos(n)/n

4 converges absolutely.

61. diverges: even though this is an alternating series, I personally feel
the need to try the nth term test first, since for n large, the dominant
terms are the 3n in the numerator and the 2n in the demoninator, and

17



so I expect that the value of 3n/(n(2n+1)) to be large for large values
of n. Let’s check this:

3n

n(2n + 1)
=

3n

n 2n + n
>

3n

n 2n + n 2n
=

3n

2n 2n
=
(

3

2

)n 1

2n
.

Now, notice that (3/2)n > n for n ≥ 3 (since (3/2)3 > 3 and the
derivative of (3/2)n − n is positive for n ≥ 3), and so

3n

n(2n + 1)
>
(

3

2

)n 1

2n
>

1

2

for n ≥ 3. (So, not exactly large for large values of n, but big enough
to do the trick.) Hence, the limit limn→∞(−1)n3n/(n(2n+1)) does not
exist (as it oscillates positive and negative and never settles down to 0),
and so by the nth term test for divergence,

∑∞
n=1(−1)n3n/(n(2n + 1))

diverges.

62. converges conditionally: we first check for absolute convergence,
namely the convergence of the series

∑∞
n=1 |(−1)n−1n/(n2+1)| = ∑∞

n=1 n/(n
2+

1). Since n/(n2 + 1) > n/(n2 + n2) = 1/(2n) for all n ≥ 1 and since
∑∞

n=1 1/(2n) diverges (as it is a constant multiple of the harmonic se-
ries), the first comparison test yields that

∑∞
n=1 n/(n

2 + 1) diverges,
and so the original series does not converge absolutely.

As it is an alternating series, we can attempt to check convergence by
seeing if we can apply the alternating series test. Since limn→∞ n/(n2+
1) = 0 and since n/(n2+1) > (n+1)/((n+1)2+1) for all n ≥ 1, the hy-
potheses of the alternating series test are met, and so

∑∞
n=1(−1)n−1n/(n2+

1) converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

63. converges absolutely: we first check absolute convergence, namely
the convergence of the series

∑∞
n=2 |(−1)n−1/(n ln2(n))| = ∑∞

n=2 1/(n ln
2(n)).

For this series, we use the integral test: set f(x) = 1/(x ln2(x)). We
need to check that f(x) is decreasing, which we do by calculating its
derivative:

f ′(x) =
−(ln2(x) + 2 ln(x))

x2 ln4(x)
< 0

for x ≥ 2 (since ln(x) > 0 for x ≥ 2). We now calculate:
∫ ∞

2
f(x)dx = lim

M→∞

∫ M

2

1

x ln2(x)
dx
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= lim
M→∞

−1
ln(x)

∣

∣

∣

M
2

= lim
M→∞

(

−1
ln(M)

+
1

ln(2)

)

=
1

ln(2)
.

Since this limit exists, the integral test yields that the series
∑∞

n=2 1/(n ln
2(n))

converges, and hence that the original series
∑∞

n=2(−1)n−1/(n ln2(n))
converges absolutely.

64. diverges: we apply the ratio test (note 2.), as this is a series with
non-zero terms:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n2(n+1)/(n+ 1)2

(−1)n−12n/n2

∣

∣

∣

∣

∣

= lim
n→∞

2n2

(n+ 1)2
= 2 = L.

Since this limit exists and satisfies L > 1, the series
∑∞

n=1(−1)n−12n/n2

diverges.

65. converges absolutely: we first check for absolute convergence, namely
the convergence of the series

∑∞
n=1 |(−1)n sin(

√
n)/n3/2| = ∑∞

n=1 | sin(
√
n)|/n3/2.

Since | sin(√n)|/n3/2 ≤ 1/n3/2 for n ≥ 1 (since | sin(√n)| ≤ 1 for
n ≥ 1), and since

∑∞
n=1 1/n

3/2 converges by note 1., the second com-
parison test yields that

∑∞
n=1 | sin(

√
n)|/n3/2 converges, and hence that

the original series
∑∞

n=1(−1)n sin(
√
n)/n3/2 converges absolutely.

66. converges absolutely: even though there are no factorials, let us
apply the ratio test. So, we calculate:

lim
n→∞

(n+ 1)4e−(n+1)2

n4e−n2 = lim
n→∞

(

n+ 1

n

)4

e−2n−1 = 0 = L.

Since this limit exists and since L < 1, the ratio test yields that the
series

∑∞
n=1 n

4e−n
2
converges.

67. converges conditionally: before testing for absolute convergence, we
perform a bit of algebraic simplification, by noting that

sin
(

nπ

2

)

= sin

(

2kπ

2

)

= sin(kπ) = 0

for n even and

sin
(

πn

2

)

= sin

(

π(2k + 1)

2

)

= sin
(

kπ +
π

2

)

= (−1)k
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for n = 2k + 1 odd. Hence, setting n = 2k + 1 for k ≥ 0, we may
rewrite the series as

∞
∑

n=1

sin(nπ/2)

n
=

∞
∑

k=0

sin(π(2k + 1)/2)

2k + 1
=

∞
∑

k=0

(−1)k
2k + 1

.

We first test for absolute convergence, namely the convergence of the
series

∑∞
k=0 |(−1)k/(2k+1)| = ∑∞

k=0 1/(2k+1). However, since 1/(2k+
1) > 1/(2k+2) = 1/2(k+1) and since

∑∞
k=0 1/(k+1) is the harmonic

series, the series
∑∞

k=0 1/(2k + 1) diverges by the first comparison test,
and hence the original series does not converge absolutely.

To test convergence, we use the alternating series test. Since 1/(2k +
1) > 1/(2(k + 1) + 1) for all k ≥ 0 and since limk→∞ 1/(2k + 1) = 0,
the alternating series test yields that

∑∞
k=0(−1)k/(2k + 1) converges.

Hence, this series converges but does not converge absolutely. That is,
the series converges conditionally.

68. diverges: for this series, we first note that ln(x) < x1/8 for x large
(x > e32 works), as follows: consider the function f(x) = x1/8 − ln(x),
and note that

f(e8k) = (e8k)1/8 − ln(e8k) = ek − 8k,

and so f(e32) = e4 − 32 = 22.5982... > 0.

Moreover, for x ≥ e32, we have that f(x) is increasing: differentiating,
we see that

f ′(x) =
1

8
x−7/8 − 1

x
=

1

x

(

1

8
x− 1

)

,

and so f ′(x) > 0 for x > 8.

So, for n > e32, we have that

1

ln(n)8
>

1

(n1/8)8
=

1

n
,

and hence by the first comparison test,
∑∞

n=2 1/(ln(n))
8 diverges. (Note

that we are making heavy use of Note 3., that ignoring finitely many
terms of a series does not affect its convergence or divergence.)
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69. converges absolutely: (note that the lower limit 13 for the series
yields that ln(n) and ln(ln(n)) are positive for all terms in the series.)
We apply the integral test, using the function

f(x) =
1

x ln(x)(ln(ln(x)))p
.

We first check that f(x) is decreasing:

f ′(x) =
−(ln(x) ln(ln(x))p + ln(ln(x))p + p)

(x ln(x) ln(ln(x))p)2
< 0

for x > 13, since both ln(x) > 0 and ln(ln(x)) > 0 for x > 13 and since
p > 0 by assumption.

In order to apply the integral test, we now need to calculate:

∫ ∞

13
f(x)dx = lim

M→∞

∫ M

13

1

x ln(x)(ln(ln(x)))p
.

There are two cases: if p = 1, we get

lim
M→∞

∫ M

13

1

x ln(x)(ln(ln(x))
= lim

M→∞
ln(ln(ln(x)))

∣

∣

∣

M
13

= lim
M→∞

(ln(ln(ln(M)))− ln(ln(ln(13)))) =∞,

and so for p = 1 the series diverges.

For p 6= 1, we get:

lim
M→∞

∫ M

13

1

x ln(x)(ln(ln(x))p
= lim

M→∞

1

−p+ 1

1

ln(ln(x))p−1

∣

∣

∣

M
13

=
1

−p+ 1
lim
M→∞

(

ln(ln(M))−p+1 − ln(ln(13))−p+1
)

,

which converges for p > 1 (since −p + 1 < 0)and diverges for p < 1
(since −p + 1 > 0). Hence, the series

∑∞
n=13 1/(n ln(n)(ln(ln(n)))

p)
converges if and only if p > 1. (Note that this is really just Note 1. in
a bit of disguise.)

Note 1.
The series

∑∞
n=1

1
ns converges if and only if s > 1.
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For s = 1, this series is called the harmonic series, and we can prove
directly that it diverges. Note that 1

3
+ 1

4
> 1

2
, that 1

5
+ · · · + 1

8
> 41

8
= 1

2
,

and in general that

1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k
> 2k−1 1

2k
=

1

2
.

Hence, the (2k)th partial sum S2k satisfies S2k > 1+k 1
2
. Since the terms in the

harmonic series are all positive, the sequence of partial sums is monotonically
increasing, and by the calculation done the sequence of partial sums is un-
bounded, and so the sequence of partial sums diverges. Hence, the harmonic
series diverges.

Note 2.
Ratio and root tests for general series: Let

∑∞
n=0 an be a series with

non-zero terms, so that an 6= 0 for all n.

• Ratio test: Suppose that limn→∞

∣

∣

∣

an+1

an

∣

∣

∣ = L exists. If L < 1, then
∑∞

n=0 an converges absolutely. If L > 1, then
∑∞

n=0 an diverges. If
L = 1, this test gives no information.

• Root test: Suppose that limn→∞(|an|)1/n = L exists. If L < 1, then
∑∞

n=0 an converges absolutely. If L > 1, then
∑∞

n=0 an diverges. If
L = 1, this test gives no information.

Note 3.
Let

∑∞
n=0 an and

∑∞
n=0 bn be two infinite series, and suppose there exists P

so that an = bn for all n > P . (That is, assume the terms of the two series
are equal after some point.) Then,

∑∞
n=0 an converges if and only if

∑∞
n=0 bn

converges. That is, the convergence or divergence of a series is not affected
by mucking about with finitely many terms of the series.
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