Question

In each of the following, $\sum_{n=1}^{\infty} a_{n}$ is a convergent series with positive terms.

1. Prove that, if $\left\{c_{n}\right\}$ is a sequence of positive terms satisfying $\lim _{n \rightarrow \infty} c_{n}=$ 0 , then $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges;
2. Prove that, if $\left\{c_{n}\right\}$ is a sequence of positive terms satisfying $\lim _{n \rightarrow \infty} c_{n}=$ $c \neq 0$, then $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges.

Answer

Let $S_{k}=\sum_{n=1}^{k} a_{n}$ be the $k^{t h}$ partial sum of $\sum_{n=1}^{\infty} a_{n}$.

1. Since $\lim _{n \rightarrow \infty} c_{n}=0$ and $c_{n}>0$ for all n, there exists $M>0$ so that $0<c_{n}<1$ for $n>M$. Let $M=\max \left(1, c_{1}, c_{2}, \ldots, c_{M}\right)$, and note that $c_{n} \leq M$ for all $n \geq 1$. In particular, the $k^{t h}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ satisfies

$$
\sum_{n=1}^{k} a_{n} c_{n} \leq \sum_{n=1}^{k} a_{n} M=M S_{k} .
$$

Hence, the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ forms a monotonic (since all the a_{n} and c_{n} are positive), bounded (above by $M \sum_{n=1}^{\infty} a_{n}$, below by 0) sequence, and so converges. That is, $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges.
2. The proof in the case that $\lim _{n \rightarrow \infty} c_{n}=c \neq 0$ is very similar to the proof in the case that $\lim _{n \rightarrow \infty} c_{n}=0$. Since $\lim _{n \rightarrow \infty} c_{n}=c \neq 0$, there exists $M>0$ so that $c_{n}<c+1$ for $n>M$. Let $M=\max \left(c+1, c_{1}, c_{2}, \ldots, c_{M}\right)$, and note that $c_{n} \leq M$ for all $n \geq 1$. In particular, the $k^{t h}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ satisfies

$$
\sum_{n=1}^{k} a_{n} c_{n} \leq \sum_{n=1}^{k} a_{n} M=M S_{k}
$$

Hence, the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ forms a monotonic (since all the a_{n} and c_{n} are positive), bounded (above by $M \sum_{n=1}^{\infty} a_{n}$, below by 0) sequence, and so converges. That is, $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges.

