Question

In each of the following, $\sum_{n=1}^{\infty} a_n$ is a convergent series with positive terms.

- 1. Prove that, if $\{c_n\}$ is a sequence of positive terms satisfying $\lim_{n\to\infty} c_n = 0$, then $\sum_{n=1}^{\infty} a_n c_n$ converges;
- 2. Prove that, if $\{c_n\}$ is a sequence of positive terms satisfying $\lim_{n\to\infty} c_n = c \neq 0$, then $\sum_{n=1}^{\infty} a_n c_n$ converges.

Answer

Let $S_k = \sum_{n=1}^k a_n$ be the k^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

1. Since $\lim_{n\to\infty} c_n = 0$ and $c_n > 0$ for all n, there exists M > 0 so that $0 < c_n < 1$ for n > M. Let $M = \max(1, c_1, c_2, \ldots, c_M)$, and note that $c_n \leq M$ for all $n \geq 1$. In particular, the k^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n c_n$ satisfies

$$\sum_{n=1}^{k} a_n c_n \le \sum_{n=1}^{k} a_n M = M S_k.$$

Hence, the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n c_n$ forms a monotonic (since all the a_n and c_n are positive), bounded (above by $M \sum_{n=1}^{\infty} a_n$, below by 0) sequence, and so converges. That is, $\sum_{n=1}^{\infty} a_n c_n$ converges.

2. The proof in the case that $\lim_{n\to\infty} c_n = c \neq 0$ is very similar to the proof in the case that $\lim_{n\to\infty} c_n = 0$. Since $\lim_{n\to\infty} c_n = c \neq 0$, there exists M>0 so that $c_n < c+1$ for n>M. Let $M=\max(c+1,c_1,c_2,\ldots,c_M)$, and note that $c_n \leq M$ for all $n\geq 1$. In particular, the k^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n c_n$ satisfies

$$\sum_{n=1}^{k} a_n c_n \le \sum_{n=1}^{k} a_n M = M S_k.$$

Hence, the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n c_n$ forms a monotonic (since all the a_n and c_n are positive), bounded (above by $M \sum_{n=1}^{\infty} a_n$, below by 0) sequence, and so converges. That is, $\sum_{n=1}^{\infty} a_n c_n$ converges.