Exam Question

Topic: CriticalPoints

Find and classify the critical points of the function

$$f(x,y) = 3x^4 + 12xy + 4y^3.$$

Solution

$$f(x,y) = 3x^4 + 12xy + 4y^3.$$

$$f_x = 12x^3 + 12y = 0 \Rightarrow y = -x^3$$
.

$$f_y = 12x + 12y^2 = 0 \Rightarrow x = -y^2$$

$$f_x = 12x^3 + 12y = 0 \Rightarrow y = -x^3.$$

 $f_y = 12x + 12y^2 = 0 \Rightarrow x = -y^2.$
So $x = -x^6$, giving $x = 0$ or $x^5 = -1$ i.e. $x = -1$.

The critical points are therefore (0,0); (-1,1)

	(0,0)	(-1,1)
$f_{xx} = 36x^2$	0	36
$f_{xy} = 12$	12	12
$f_{yy} = 24y$	0	24
$\Delta = f_{xy}^2 - f_{xx}f_{yy}$	144	-720

So(0,0) is a saddle point, and since $f_{xx}(-1,1) > 0$, (-1,1) is a local minimum.