In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

The smooth curve $y(x)$ is defined for $-\log 2 \leq x \leq \log 2$ and is such that $y(\pm \log 2)=\frac{5}{4}$. If the curve is rotated about the x-axis, show that the area of the surface of revolution thus generated is given by

$$
A=2 \pi \int_{-\log 2}^{\log 2} y \sqrt{1+y^{\prime 2}} d x
$$

Hence show that the extremal y satisfies

$$
\frac{y}{\sqrt{1+y^{\prime 2}}}=\text { const. }
$$

and thus the area is stationary if $y=\cosh x$.
Now consider a surface of rotation in the shape of a cylindrical spool formed from two parallel discs of radius $\frac{5}{4}$ placed at $x= \pm \log 2$, joined along the x axis by an infinitely thin rod. By simple geometry, show that the surface area of this shape if given by $\frac{25 \pi}{8}$ and is thus less than the apparent minimum value obtained with $y=\cosh x$. How do you explain this apparent contradiction? (Hint: remember the assumptions on differentiability that have been made in the first part of the question.)

Answer
PICTURE

Standard calculus gives
Surface area $\underbrace{d A}=\underbrace{2 \pi y} \underbrace{d s}$
elemental surface area circumference element width
Thus

$$
\begin{aligned}
A & =\int 2 \pi y d s \\
& =2 \pi \int y \sqrt{1+y^{\prime 2}} d x
\end{aligned}
$$

standard results, see lecture notes
$A=2 \pi \int_{x=-\log 2}^{x=+\log 2} y \sqrt{1+y^{\prime 2}} d x$ as required
$\overline{F=F}\left(y, y^{\prime}\right)$ only, so E-L equation has first integral $y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=$ const

$$
\begin{aligned}
& \frac{\partial F}{\partial y^{\prime}}=\frac{2 \pi y y^{\prime}}{\sqrt{1+y^{\prime 2}}} \\
\Rightarrow & \frac{2 \pi y y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}-2 \pi y \sqrt{1+y^{\prime 2}}=\mathrm{const} \\
\Rightarrow & \frac{2 \pi y}{\sqrt{1+y^{\prime 2}}}=\mathrm{const} \\
\Rightarrow & \frac{y}{\sqrt{1+y^{\prime 2}}}=\mathrm{const}=\alpha \text { say }
\end{aligned}
$$

Thus we have $y^{\prime 2}=\frac{y^{2}}{\alpha^{2}}-1$ which is solved via standard integrals to give

$$
y=\alpha \cosh \left(\frac{x}{\alpha}+c\right) \text { for constant } \mathrm{c}, \text { alpha }
$$

¿From symmetry of boundary conditions, we need $c=0$. The other condition is satisfied with $\alpha=1$. Thus $\underline{y=\cosh x}$ is the extremal solution.
Surface of rotation
PICTURE

Surface area (inside $-\log 2<x<\log 2$) is $2 \times\left[\pi \times\left(\frac{5}{4}\right)^{2}\right]=\frac{25 \pi}{8}=$ 9.817...(A)

Now on extremal $y=\cosh x$ we have

$$
\begin{aligned}
A & =2 \pi \int_{-\log 2}^{+\log 2} \cosh ^{2} x d x \\
& =2 \pi\left[\log 2+\frac{1}{2} \sinh (2 \log 2)\right] \\
& =10.25(B)
\end{aligned}
$$

Clearly $(B)>(A)$, but we have assumed that $y=\cosh x$ is a minimum. Assuming is still is (can be confirmed by considering second variation) there is an apparent contradiciton. The resolution is that the disc case is not formed by the rotation of a smooth function as we have assumed in the case of (B). Thus $y=\cosh x$ is the minimal result if we restrict the solution to smooth functions as in the question, the disc result is not a valid solution. Hence no paradox!

