In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

The Principle of Least Action (PLA) states that the motion of a particle of mass m between points P and Q is a potential field $V(x, y)$ is such that, for $h=$ const, and $d s$ being the distance element along the particle's path, the action

$$
A=\int_{P}^{Q} d s \sqrt{2 m(h-V)}
$$

is minimised. Show that if $V=m g y(x)$ (a vertical gravitational potential field) and the particle is under moves horizontally between $x=a$ and $x=b$ then the PLA requires minimisation of the following functional integral:

$$
A=\int_{a}^{b} d x \sqrt{2 m(h-m g y)\left(1+y^{\prime 2}\right)} .
$$

Determine the particle path, given that $m=1, g=10, h=1, a=0, b=1$ (in appropriate units). Sketch the path.

Answer

$$
\begin{aligned}
A & =\int_{P}^{Q} d s \sqrt{2 m(h-V)} \\
& =\int_{x=a}^{x=b} d x \sqrt{1+y^{\prime 2}} \sqrt{\underbrace{2 m(h-V)}} \\
& =\int_{a}^{b} d x \sqrt{2 m(h-m g y)\left(1+y^{\prime 2}\right)}
\end{aligned}
$$

Set $m=1, g=10, h=1, a=0, b=1$ and we have

$$
A=\int_{0}^{1} d x \sqrt{2(1-10 y)\left(1+y^{\prime 2}\right)}
$$

So $F=\sqrt{2(1-10 y)\left(1+y^{\prime 2}\right)}=F\left(y, y^{\prime}\right) \underline{\text { only }}$

So E-L becomes $y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=$ const
$\Rightarrow y^{\prime} \frac{\sqrt{2(1-10 y)}}{\sqrt{1+y^{\prime 2}}} y^{\prime}-\sqrt{2(1-10 y)\left(1+y^{\prime 2}\right)}=$ const
$\Rightarrow \frac{\sqrt{2(1-10 y)}}{\sqrt{1+y^{\prime 2}}}=$ const $=\sqrt{2} c$ say
Therefore $\frac{1-10 y}{1+y^{\prime 2}}=c^{2} \Rightarrow y^{\prime 2}=\left(\frac{1}{c^{2}}-1\right)-\frac{10 y}{c^{2}}$
which integrates to give

$$
\begin{aligned}
& \quad \int \frac{d y}{\sqrt{\left(\frac{1}{c^{2}}-1\right)-\frac{10 y}{c^{2}}}}=\int d x \\
& \Rightarrow-2 \frac{c^{2}}{10} \sqrt{\left(\frac{1}{c^{2}}-1\right)-\frac{10 y}{c^{2}}}=x+d d=\text { const } \\
& \Rightarrow y=\frac{\left(1-c^{2}\right)}{10}-\frac{10}{4 c^{2}}(x+d)^{2}
\end{aligned}
$$

A parabola. Would need boundary conditions to evaluate c and d.

