In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

A particle moves along the y-axis and is at $y=0$ when $x=0$. It reaches $y=a$ when $x=T$. The motion is governed by Hamilton's principle which states that the particle moves so as to make

$$
\frac{1}{2} \int_{0}^{T} d x\left(y^{\prime 2}+\omega^{2} y^{2}\right)
$$

stationary, where ω is a given constant. Show that the motion is $y=$ $a \frac{\sinh \omega x}{\sinh \omega T}$. By also computing the second variation, show that it is independent of the path and also positive for all possible variations. Hence deduce that this is a minimum extremal.

Answer
Let $I=\frac{1}{2} \int_{0}^{T} d x\left(y^{\prime 2}+\omega^{2} y^{2}\right)$
$F=y^{\prime 2}+\omega^{2} y^{2}$
$\frac{\partial F}{\partial y}=2 \omega^{2} y ; \frac{\partial F}{\partial y^{\prime}}=2 y^{\prime}$
Therefore E-L is $2 \omega^{2} y-\frac{d}{d x}\left(2 y^{\prime}\right)=0$
$\Rightarrow \omega^{2}-y-y^{\prime \prime}=0 \quad \omega=$ const
Which can be solved easily to give
$y=A \cosh \omega x+B \sinh \omega x$
consts A and B from boundary conditions: $y(0)=0, y(T)=a$
$\Rightarrow A=0, B=\frac{a}{\sinh \omega t}$
$\Rightarrow y=\frac{a \sinh \omega x}{\sinh \omega T}$

By computing second variation

$$
\begin{aligned}
V_{2} & =\int_{0}^{T}\left[\eta^{\prime 2} \frac{\partial^{2} F}{\partial y^{\prime 2}}+2 \eta \eta^{\prime} \frac{\partial^{2} F}{\partial y \partial y^{\prime}}+\eta^{2} \frac{\partial^{2} F}{\partial y^{2}}\right] \\
& =\int_{0}^{T}\left[2 \eta^{\prime 2}+0+2 \omega^{2} \eta^{2}\right] \\
& =2 \int_{0}^{T} d x\left[{\eta^{\prime 2}}^{2}+\omega^{2} \eta^{2}\right]
\end{aligned}
$$

This is independent of the path $y(x)$ and is also positive for all possible $\eta(x) \neq 0$. Thus we have a weak minimum (from lecture notes)

