In what follows you may assume that the following notation applies

) dy
y=yl@), y'=_"
You may also assume that, unless otherwise stated, y is a sufficiently contin-
uously differentiable function.
Question
A particle moves along the y-axis and is at y = 0 when = 0. It reaches
y = a when x = T. The motion is governed by Hamilton’s principle which

states that the particle moves so as to make
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stationary, where w is a given constant. Show that the motion is y =
sinh wx
a .
sinh T . ) o
dent of the path and also positive for all possible variations. Hence deduce
that this is a minimum extremal.

By also computing the second variation, show that it is indepen-

Answer
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Therefore E-L is 2w?y — %(2y') =0

=w?—y—y"=0 w= const

Which can be solved easily to give

y = Acoshwzx + Bsinhwzx

consts A and B from boundary conditions: y(0) =0, y(T) = a

= A=0, B=— a
sinh wt

asinh wx

= y=—
y sinh wT




By computing second variation
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This is independent of the path y(z) and is also positive for all possible
n(x) # 0. Thus we have a weak minimum (from lecture notes)



