In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x}
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find the continuous curve between the points $(0,0)$ and $\left(\frac{\pi}{2}, 1\right)$ for which

$$
I=\int_{0}^{\frac{\pi}{2}} d x y\left(1-y^{\prime 2}\right)^{\frac{1}{2}}
$$

is stationary.

Answer

$F=y \sqrt{1-y^{\prime 2}}$ Again $F=F\left(y, y^{\prime}\right)$ only so
$y^{\prime} \frac{\partial F}{\partial y}-F=\mathrm{const}$
$\frac{\partial F}{\partial y^{\prime}}=\frac{y}{\sqrt{1-y^{\prime 2}}} \times-\frac{2 y^{\prime}}{2}$
Therefore $-\frac{y^{\prime 2} y}{\sqrt{1-y^{\prime 2}}}-y \sqrt{1-y^{\prime 2}}=$ const
$\Rightarrow \frac{y}{\sqrt{1-y^{\prime 2}}}=$ const $=\alpha$ say
$\Rightarrow y^{\prime 1} 2=1-\frac{y^{2}}{\alpha^{2}}$
Hence $\int \frac{d y}{\sqrt{1-\frac{y^{2}}{\alpha^{2}}}}=\int d x \Rightarrow y=\alpha \sin \left(\frac{x}{\alpha}+c\right)$
(standard integral) $c=$ constant of integration
Now satisfy boundary conditions: $\left\{\begin{aligned} y(0)=0 & \Rightarrow c=0 \\ y\left(\frac{\pi}{2}\right)=1 & \Rightarrow 1=\alpha \sin \left(\frac{\pi}{2 \alpha}\right)\end{aligned}\right.$
Obvious solutions to the equation are $\alpha= \pm 1$. These are the only two (sensible) ones. Why?
Plot $\frac{1}{\alpha}$ and $\sin \frac{\pi}{2 \alpha}$ against $\frac{1}{\alpha}$:

PICTURE

$\frac{1}{\alpha}=0$ is also a solution but is meaningless as $\Rightarrow \alpha=\infty$, so a nonsensical solution.
Hence $y= \pm \sin (\pm x) \Rightarrow \underline{y=\sin x \text { uniquely }}$

