Question

The equation governing the temperature $u(x, t)$ in a bar of metal of length l is

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{k} \frac{\partial u}{\partial t}=0
$$

The ends of the bar are held at zero temperature, so that

$$
u(0, t)=0 \text { and } u(l, t)=0 \text { for all } t>0
$$

The initial temperature is given by $u(x, 0)=f(x)$ for $0 \leq x \leq l$.
(a) Find the temperature $u(x, t)$ at some future time t if $f(x)$ is given by

$$
f(x)=3 \sin \left(\frac{4 \pi x}{l}\right)
$$

(b) Find the temperature if $k=100, l=1$ and $f(x)$ is given by

$$
f(x)=\sin 2 \pi x-2 \sin 5 \pi x \quad 0 \leq x \leq 1
$$

Answer

Let $y(x, t)=X(x) T(t)$ so that

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=\frac{1}{k} \frac{T^{\prime \prime}}{T}=\lambda \\
& \Rightarrow X^{\prime \prime}-\lambda X=0
\end{aligned}
$$

$X(0)=0$ and $X(l)=0$

$$
\Rightarrow \lambda=-\frac{n^{2} \pi^{2}}{l^{2}}
$$

Therefore

$$
\begin{aligned}
X_{n}(x) & =A_{n} \sin \left(\frac{n \pi x}{l}\right) \\
T^{\prime} & =-\frac{n^{2} \pi^{2} k}{l^{2}} T \\
T_{n}(t) & =B_{n} e^{-\frac{n^{2} \pi^{2} k t}{l^{2}}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} Q_{n} \sin \left(\frac{n \pi x}{l}\right) e^{-\frac{n^{2} \pi^{2} k t}{l^{2}}} \\
f(x) & =\sum_{n=1}^{\infty} Q_{n} \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
$$

If $f(x)=3 \sin \left(\frac{4 \pi x}{l}\right)$ then $Q_{4}=3$ and $Q_{n}=0$ otherwise. So

$$
u(x, t)=3 \sin \left(\frac{4 \pi x}{l}\right) e^{-\frac{16 \pi^{2} k t}{l^{2}}}
$$

If $l=1$ then $f(x)=\sum_{n-1}^{\infty} Q_{n} \sin (n \pi x)$. But $f(x)=\sin (2 \pi x)-2 \sin (5 \pi x)$ $\Rightarrow Q_{2}=1 \quad Q_{5}=-2$ and $Q_{n}=0$ otherwise. So

$$
u(x, t)=\sin (2 \pi x) e^{-400 \pi^{2} t}-2 \sin (5 \pi x) e^{-2500 \pi^{2} t}
$$

