Question

(a) Find the cartesian equation of the plane containing the point $(1,0,-1)$ parallel to both the lines

$$
\begin{aligned}
& \frac{x-1}{2}=y=\frac{z+2}{3} \\
& \frac{x+4}{3}=\frac{y-1}{2}=z
\end{aligned}
$$

Find the shortest distance between each line and the plane.
(b) The triangle $A B C$ has each side extended by the same factor λ, as in the diagram. (So $\left|A B^{\prime}\right|=\lambda|A B|$ etc.) Find the ratio of the areas of triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A B C$.

Answer
(a) A normal to the plane is

$$
(2,1,3) \times(3,2,1)=(-5,7,1)
$$

So the plane has equation

$$
-5 x+7 y+z=k
$$

It contains $(1,0,-1)$ so $k=-6$

Therefore the equation is

$$
-5 x+7 y+z=-6
$$

Distance of \mathbf{p} from $\mathbf{a} \cdot \mathbf{n}=k$ is $\frac{|\mathbf{a} \cdot \mathbf{p}-k|}{|\mathbf{a}|}$
So the distance of l_{1} from π is the distance of $(1,0,-2)$ from π $=\frac{|-7+6|}{\sqrt{75}}=\frac{1}{\sqrt{75}}=\frac{1}{5 \sqrt{3}}$
So the distance of l_{2} from π is the distance of $(-4,1,0)$ from π
$=\frac{|27+6|}{\sqrt{75}}=\frac{33}{\sqrt{75}}=\frac{11 \sqrt{3}}{5}$
(b) Let A be the origin $\overrightarrow{A B}=\mathbf{b} \overrightarrow{A C}=\mathbf{c}$

$$
\begin{aligned}
\overrightarrow{A^{\prime} B^{\prime}}=\overrightarrow{A^{\prime} A}+\overrightarrow{A B^{\prime}} & =(\lambda-1) \mathbf{c}+\lambda \mathbf{b} \\
\overrightarrow{A^{\prime} C^{\prime}}=\overrightarrow{A^{\prime} C}+\overrightarrow{C C^{\prime}} & =\lambda c+(\lambda-1)(\mathbf{c}-\mathbf{b}) \\
& =(2 \lambda-1) \mathbf{c}-(\lambda-1) \mathbf{b}
\end{aligned}
$$

The area of $A^{\prime} B^{\prime} C^{\prime}$ is

$$
\begin{aligned}
\frac{1}{2}\left|\left(\overrightarrow{A^{\prime} B^{\prime}} \times \overrightarrow{A^{\prime} C^{\prime}}\right)\right| & =\frac{1}{2}|((\lambda-1) \mathbf{c}+\lambda \mathbf{b}) \times((2 \lambda-1) \mathbf{c}(\lambda-1) \mathbf{b})| \\
& =\frac{1}{2}\left|+(\lambda-1)^{2}+\lambda(2 \lambda-1)\right||\mathbf{B} \times \mathbf{C}| \\
& =\frac{1}{2}\left|3 \lambda^{2}-3 \lambda+1\right||\mathbf{b} \times \mathbf{c}|
\end{aligned}
$$

Therefore the required ration is $\left|3 \lambda^{2}-3 \lambda+1\right|$

