
Question
Describe what is meant by a Compound Poisson process.

Show that if A(z) is the probability generating function for the number of
events occurring at each point of the process, then the random variable X(t)
- the total number of events occurring in time t - has a probability generating
function of the form

G(z) = exp(λtA(z)− λt)

During the working day (8 a.m. to 6 p.m.) the Highfield Patent Medicine
Co. receives telephone calls ordering various numbers of bottles of Dr. Hirst’s
Rejuvenating Elixir. The telephone calls arrive according to a Poisson process
with rate λ calls per hour. The number N of bottles ordered by a telephone
call has a geometric distribution, i.e.

P (N = n) = p(1− p)n−1, n = 1, 2, · · ·

Find the mean and variance of the number of bottles ordered per day.

Answer
Suppose that

(i) points occur in a Poisson process {N(t) : t ≥ 0} with rate λ

(ii) at the ith point Yi event occur, where Y1, Y2, ... are i.i.d. random vari-
ables’s

(iii) Yi and {N(t) : t ≥ 0} are independent. The total number of events
occurring in a time interval of length t i s

X(t) =
N(t)
∑

i=1

Yi

{N(t) : t ≥ 0} is said to be a compound Poisson process.
Let the p.g.f. of each Yi be A(z). Then X(t) has p.g.f.
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since the Yi are independent

= exp(λtA(z)− λt)

= G(z)

For the geometric distribution
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From 8a.m. to 6p.m. there are 10 hours. So the p.g.f. for the number of
bottles ordered are day is

G(z) = exp
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