Question

(a) A Markov chain has the infinite transition probability matrix given be-
low. Classify the states, justifying your conclusions. Find the mean
recurrence time for any positive recurrent states. (Label the states
1, 2, 3, .-+ in order.)
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(b) Draw a transition diagram and write down the transition matrix for a
Markov chain having four intercommunicating positive recurrent states
each of period 3, and three intercommunicating transient states.

Answer

(a) {1, 2} forms a closed irreducible finite subchain, so that both states are

2
positive recurrent. f2(§) =3 > (), so that both states are aperiodic.
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State 3 is transient, leading to {1, 2} in one step.
State 4 is absorbing.

1
State {5, 6, 7, ...} form a closed irreducible subchain. f5(51)) =3 > 0. so

they are all aperiodic.
Consider state 5.

The Markov chain can return to 5 at the nth step (n > 1) only via the
path
5—-6—-7—..—-5+(n—-1)—5
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So state 5 is recurrent.
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Thus states 5, 6, 7... are all null-recurrent.

(b) Example
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