Question

a) The function $Q(z)$ is a rational function such that $\lim _{z \rightarrow \infty} z Q(z)=0$, and the curve Γ is the upper half of the circle $|z|=R$. Prove that

$$
\lim _{R \rightarrow \infty} \int_{\Gamma} Q(z) e^{\mathrm{im} z} d z=0
$$

where $m \geq 0$.
b) Use the result in part (a) and the calculus of residues to show that
i) $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{4}$
ii) $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{2 e}$.

Answer

a) $Q(z)$ is a rational function and $\lim _{|z| \rightarrow \infty} z Q(z)=0$.

Let $Q(z)=\frac{A(z)}{B(z)}$ where A and B are polynomials of degrees a and b.
$z Q(z)=\frac{z A(z)}{B(z)} \sim \frac{\text { degree } a+1}{\text { degree } b}$
so $a+1<b$ since $z Q(z) \rightarrow 0$ as $|z| \rightarrow \infty$
i.e. $a \leq b-2$, so $\exists K, H$ such that for $|z|>H \quad|q(z)|<\frac{B}{|z|^{2}}$

Now for z on $\Gamma \quad\left|e^{i m z}\right|=e^{-m R \sin \theta} \leq 1$ for $\theta \in[0, \pi]$
So for $R>H$
$\left|\int_{\Gamma} Q(Z) e^{i m z} d z\right| \leq \frac{K}{R^{2}} \pi R \rightarrow 0$ as $R \rightarrow \infty$
b) i) $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}$

We integrate $f(z) \frac{1}{\left(1+z^{2}\right)^{2}}$ around C.
This satisfies the conditions of (a) with $m=0$ and
$q(z)=\frac{1}{\left(1+z^{2}\right)^{2}}$
$f(z)$ has a pole of order 2 at $z=i$ inside C with residue
$\left.\frac{d}{d z}(z-i)^{2} f(z)\right|_{z=i}=\frac{d}{d z} \frac{1}{(z+i)^{2}}=\left.\frac{-2}{(z+i)^{3}}\right|_{z=i}=-\frac{i}{4}$
$\int_{C} f(z) d z=2 \pi i\left(-\frac{i}{4}\right)=\frac{\pi}{2}$
so $\int_{0}^{\infty} f(x) d x=\frac{\pi}{4}$
ii) We integrate $f(z)=\frac{e^{i z}}{1+z^{2}}$ around C, the result of (a) applies with $m=1$ and $q(z)=\frac{1}{1+z^{2}}$
$f(z)$ has a simple pole at $z=i$ inside Γ with residue given by $\lim _{z \rightarrow i} \frac{e^{i} z}{z+i}=\frac{e^{-1}}{2 i}$
So $\int_{C} \frac{e^{i z}}{1+z^{2}} d z=2 \pi i \frac{e^{-1}}{2 i}=\frac{\pi}{e}$
So $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{e}$ and $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}}=\frac{\pi}{2 e}$

