Question

A particle of mass m falls from rest due to gravity in a fluid which offers resistance force of size $k|v|^{\beta}$, where k and β are positive constants. Write down Newton's second law for the motion. Without solving the equation determine the limiting speed of the object in terms of the constants k and β. [Hint: if a finite limiting velocity exits then at that speed the resistance balances the gravitational force.] (note: beware of the direction of the forces) For the particular case $\beta=2$ solve the equations to find the relation between the velocity and the time.

Answer

Falling particle $\Rightarrow v<0$ and the air resistance acts upwards.
$m \frac{d^{2} x}{d t^{2}}=m \frac{d v}{d t}=-m g+k|v|^{\beta}$
The limiting velocity is the same as the equilibrium point, it is when $-m g+$ $k|v|^{\beta}=0$
$|v|^{\beta}=\frac{k}{m g} \Rightarrow|v|=\left(\frac{k}{m g}\right)^{\frac{1}{\beta}}=$ speed.
for $\beta=2, \quad m \frac{d v}{d t}=-m g+k v^{2}$ this is separable and bernoulli.
$\frac{d v}{d t}=-g+\frac{k}{m} v^{2}$
$\int \frac{d v}{\frac{k}{m} v^{2}-g}=\int d t$, now use partial fractions, to get
$\int \frac{\frac{1}{2 \sqrt{g}}}{\left(\sqrt{\frac{k}{m}} v-\sqrt{g}\right)}+\frac{-\frac{1}{2 \sqrt{g}}}{\left(\sqrt{\frac{k}{m}} v+\sqrt{g}\right)} d v=t+A$
$\frac{1}{2} \sqrt{\frac{m}{g k}} \ln \left(\frac{v-\sqrt{\frac{g m}{k}}}{v+\sqrt{\frac{g m}{k}}}\right)=t+A$
$v(t)=\left(\frac{1+c e^{2 \sqrt{\frac{g k}{m}} t}}{1-c e^{2 \sqrt{\frac{g k}{m}}}}\right) \sqrt{\frac{g m}{k}}$

