Question

For larger distances from the earth the gravitational potential is more accurately represented by -mMG/(x+R) where G is constant, M is the mass of the earth, m is the mass of the particle, x is the distance from the surface of the earth and R is the earth's radius. Show that the force produced by this potential at the surface of the earth is the same as the gravitational force -mq if the constants are such that $q = MG/R^2$ Write down the total energy of a rocket of constant mass m travelling vertically. Assuming the rocket blasts off from the earth surface (where x=0) with speed $v=V_0$ find the maximum height the rocket reaches. Determine the critical velocity that ensures the rocket never reaches a maximum height (this is the escape velocity).

Answer

Kinetic energy
$$=T=\frac{1}{2}mv^2$$
 Potential energy $=V=-\frac{mHG}{x+R}$ Energy $=T+V=\frac{1}{2}v^2-\frac{mHG}{x+R}$ Force $=-\frac{dV}{dx}=-\frac{mHG}{(x+R)^2}$, near the earth's surface $x=c$ \Rightarrow Force $\approx -\frac{mHG}{R^2}$. Compare this with $-mg$, and show these are the same if $g=\frac{HG}{R^2}$.

because the force only depends on x, it is conservative

 \Rightarrow energy remains constant.

Initially energy
$$=\frac{1}{2}mv_0^2 - \frac{mHG}{R}$$

 $\Rightarrow \frac{1}{2}mv^2 - \frac{mHG}{x+R} = \frac{1}{2}mv_0^2 - \frac{mHG}{R}$ always so $v^2 = v_0^2 - \frac{2HG}{R} + \frac{2HG}{x+R}$
The maximum height occurs when $v = 0$
 $\Rightarrow 0 - v^2 - \frac{2HG}{x+R} + \frac{2HG}{x+R}$

The maximum height occurs when
$$v = 0$$

$$\Rightarrow 0 = v_0^2 - \frac{2HG}{R} + \frac{2HG}{x+R}$$

$$\Rightarrow x = \frac{\frac{R^2 v_0^2}{2HG}}{1 - \frac{R v_0^2}{2HG}} \text{ is the maximum height.}$$

Note: for
$$1 - \frac{Rv_0^2}{2HG} > 0$$
 there is a maximum height that has $x > 0$. for $1 - \frac{Rv_0^2}{2HG} < 0$ there is no maximum height that has $x > 0$.
$$1 - \frac{Rv_0^2}{2HG} < 0 \Rightarrow 1 < \frac{Rv_0^2}{2HG}$$

$$\Rightarrow v_0 > \sqrt{\frac{2HG}{R}}$$

when $v_0 = \sqrt{\frac{2HG}{R}}$ this is the escape velocity.