Question

(*) A car with a mass of 1000 kg accelerates down a road with the engine producing a force of $2000 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}^{2}$. Determine how quickly the car reach $10 \mathrm{~m} / \mathrm{s}$ from stationary and how far it travels in this time.
Now consider extending the model to account for the fact that the car is subjected to wind resistance which produces a resistance force proportional to the speed of the car (the constant of proportionality is 40 (with all measurements in $m, k g$ and sec). How much longer does it take to get to $10 \mathrm{~m} / \mathrm{sec}$ when this air resistance force is accounted for. What is the maximum speed of the car in this case.

Answer
$1000 \frac{d^{2} x}{d t^{2}}=2000 \Rightarrow \frac{d^{2} x}{d t^{2}}=2 \Rightarrow x=t^{2}+A t+B$
$\Rightarrow x(0)=\frac{d x}{d t}(0)=0 \Rightarrow x=t^{2}, \quad \frac{d x}{d t}=2 t$
$\frac{d x}{d t}=10$ when $2 t=10 \Rightarrow t=5 \mathrm{sec}$, at $t=5 \mathrm{sec}, \quad x=(5)^{2}=25$ metres.
Now with air resistance $1000 \frac{d^{2} x}{d t^{2}}=2000-40 \frac{d x}{d t}$
The linear equation for v is $1000 \frac{d v}{d t}+4 v=200 \Rightarrow \frac{d v}{d t}+\frac{1}{25} v=2$
$I(x)=\exp \left(\int \frac{1}{25} d t\right)=\exp \left(\frac{t}{25}\right)$
$\Rightarrow \frac{d}{d t}\left(v \exp \left(\frac{t}{25}\right)\right)=2 \exp \left(\frac{t}{25}\right)$
$\Rightarrow v e^{\frac{t}{25}}=50 e^{\frac{t}{25}}+A$
$v(0)=0 \Rightarrow A=-50$
$v(t)=50\left(1-e^{-\frac{t}{25}}\right)$
maximum speed is when $t \rightarrow \infty$ and $v \rightarrow 50 \mathrm{~m} / \mathrm{s}$
$v=10$ when $10=50\left(1-e^{-\frac{t}{25}}\right) \Rightarrow \ln \left(1-\frac{1}{5}\right)=-\frac{1}{25} t$
$t=25 \ln \frac{5}{4} \approx 5.578 \Rightarrow$ air resistance slows the car so it takes 0.578 seconds longer to get to $10 \mathrm{~m} / \mathrm{s}$.

