QUESTION

Evaluate (the complex integral) $\int_{1}^{2} z^{k} d z$, where $k>-1$ is an integer. Explain why it makes sense to evaluate such an integral. What happens if $k=-1$? What happens if $k<-1$?
ANSWER
It makes sense to evaluate $\int_{1}^{2} z^{k} d z$ as long as the integral is independent of the path. This is the case if $\int_{\gamma} z^{k} d z=0$ around any closed path γ. This is true if z^{k} has an antiderivative which is the case if $k \neq-1$. (If $k=-1$ then we are not allowed to use $\log z$ as an antiderivative as Log is not analytic in a neighbourhood of 0 .) If $k \neq-1$ then $\int_{1}^{2} z^{k} d z=\frac{1}{k+1}\left[z^{k+1}\right]_{1}^{2}=\frac{2^{k+1}-1}{k+1}$.

