QUESTION The diameters of ball bearings produced by a process are normally distributed with standard deviation fo 0.04 mm . A random sample of 7 is taken and their measurements are:
7.998 .017 .988 .078 .008 .027 .93 mm .

Calculate a 95% confidence interval for μ, the true mean diameter of the ball bearings produced by this process.
The process is modified in a way that is likely to change both the mean and the standard deviation of the ball bearings produced. A random sample of 6 is taken and the measurements are
8.038 .097 .947 .898 .158 .08

Calculate a 95% confidence interval for μ, the new mean diameter. Test whether the standard deviation has been changed by the new process.
ANSWER

$$
\begin{array}{lllllll}
7.99 & 8.01 & 7.98 & 8.07 & 8.00 & 8.02 & 7.93
\end{array}
$$

$\bar{x}=8.00 \quad n=7 \quad \sigma=0.04$
$95 \% C I \quad 8.03 \pm 2.571 \times \frac{0.0982}{\sqrt{6}}=8.03 \pm 0.103$
$H_{0}: \sigma^{2}=(0.04)^{2} \quad H_{1}: \sigma^{2} \neq(0.04)^{2} \quad \alpha=5 \%$
Test of single variance is test 3. Assume normal distribution, $\mathrm{z}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \sim$ χ_{n-1}^{2}
$z=\frac{5 \times 0.098262}{0.0462}=30.125 \quad s=0.0982 \quad n=6$

Hence reject H_{0} and accept standard deviation changed.

