QUESTION The times to carry out a certain job in an industrial process is known to have mean 50 minutes and a standard deviation of 4 minutes. It is claimed that a new method of doing the job will save time. A sample of 36 tests carried out using this new method gave a mean time of 48 minutes. Assuming the same standard deviation for the new method, examine the claim at the 5% level. If the new mean was in fact 48 minutes find the probability of type II error using the standard test.
ANSWER
$H_{0}: \mu=50 \quad H_{1}: \mu<50 \quad \alpha=5 \%$
$\sigma=4$ given , test single mean 1a.
$z=\frac{\bar{x}-\mu_{0}}{\frac{\sqrt{n}}{\sqrt{n}}} \sim N(0,1)$
$\begin{aligned} & \bar{x}=48 \\ & n=36 \\ & z=\frac{48-50}{\frac{4}{6}}=-3\end{aligned}$
Reject $\mathrm{H}_{0} \quad$ Accept H_{0}
Hence reject H_{0}, accept $H_{1}: \mu<50$.
If $\mu_{\text {new }}=48 \quad \bar{x} \sim N\left(48, \frac{4^{2}}{36}\right)$

$$
\begin{aligned}
P(\text { Type II error }) & =P\left(\text { accept } h_{0} \mid H_{1} \text { true }\right) \\
& =P(Z>-1.6449) \\
& =P\left(\frac{\bar{x}-50}{6}>-1.6449\right) \\
& =P(\bar{x}>48.9034) \\
& =1-\Phi\left(\frac{48.9034-48}{\frac{4}{6}}\right) \\
& =1-\Phi(1.3551) \approx 1-0.912 \approx 0.088
\end{aligned}
$$

