Topic 1: Introduction 
     | 
  
   
     
      a. Overview of the Course
     | 
  
   
     
       
        The small-world problem  
          A world of networks  
       
      
        - Handout 1 (*)
 
        - J. Travers and S. Milgram. An experimental study of the small world 
          problem. Sociometry, 32(4), 425-443 (1969) (*) 
 
        - J. F. Hauer and J. E. Dagel. Consortium for electric reliability 
          technology solutions, grid of the future: White 
          paper on review of recent reliability issues and system events. 
          U.S. Dept. of Energy. (1999). 
 
        - S. Milgram, The small world problem. Psychology Today 2, 60-67 (1967).
 
       
        
     | 
  
   
     
      b. Introduction to graph theory terminology
     | 
  
   
    |   | 
  
   
     
      Topic 2: Random and Random-Biased Networks
     | 
  
   
     
       
        Paul Erdos and random graphs 
          Anatol Rapoport and random-biased nets  
       
      
        - Handout 2 (*)
 
        - Watts, D. J. Small Worlds: The Dynamics of Networks Between Order 
          and Randomness (Princeton, Princeton University Press, 1999), Chapter 
          2.
 
        - A. Rapoport. A contribution to the theory of random and biased nets. 
          Bulletin of Mathematical Biophysics 19, 257-271 (1957). Also 
          in S. Leinhardt (ed.) Social Networks: A Developing Paradigm, 
          389-409 (New York, Academic Press, 1977). 
 
        - A. Rapoport. Mathematical Models of Social Interaction. In R. D. Luce, 
          R. R. Bush, and E. Galanter (Eds.) Handbook of Mathematical Psychology, 
          Vol. 2, 493-579 (New York, Wiley, 1963).
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 3: Social Network Analysis
     | 
  
   
     
      a. Groups
     | 
  
   
     
      Cohesive subgroups  
        Multidimensional Scaling  
        Structural equivalence, roles and positions  
      
        - Handout 3 (*)
 
        - R. N. Shepard. Multidimensional 
          scaling, tree fitting, and clustering. Science, 210: 390-398 
          (1980). 
 
        - M. L. Davison. Multidimensional scaling. (John Wiley and Sons, 
          1983).
 
        - S. Wasserman and K. Faust. Social Network Analysis: Methods and 
          Applications (Cambridge, Cambridge University Press, 1994), Chapters 
          7 and 9. 
 
       
        
     | 
  
   
     
      b. Individuals 
     | 
  
   
     
       Ego networks  
        Clustering  
        Weak ties  
        Structural holes  
        Centrality measures  
      
        -  Handout 4 (*)
 
        - A. Degenne and M. Forse. Introducing Social Networks. (London, 
          Sage Publications, 1999), Chapter 5.
 
        - S. Wasserman and K. Faust. Social Network Analysis: Methods and 
          Applications (Cambridge, Cambridge University Press, 1994). Chapter 
          5. 
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 4: Dynamics, Emergence, and Multiple Scales
     | 
  
   
     
      a. Emergence, Part 1 (General Concepts)
     | 
  
   
     
       Local vs. global  
        Emergence  
        Multiple scales  
        Bottom-up vs. top-down representations  
        Example: Spin Systems  
      
        - Handout 5 (*)
 
        -  P. Anderson. More is 
          different. Science. 177, 393-396 (1972).
 
        -  M. Newman and G. Barkema. Monte Carlo Methods in Statistical Physics 
          (Oxford, Clarendon Press, 1999), Chapter 1. 
 
        - R. Palmer. Broken ergodicity. In D. Stein (Ed.) Lectures in the 
          Science of Complexity, SFI Studies in the Sciences of Complexity, 
          Volume 1, 275-300 (Addison Wesley Longman, 1989).
 
        - D. Stein. Disordered systems: mostly spin glasses. In D. Stein (Ed.) 
          Lectures in the Science of Complexity, SFI Studies in the Sciences 
          of Complexity, Volume 1, 301-353 (Addison Wesley Longman, 1989).
 
       
        
     | 
  
   
     
      b. Emergence, Part 2 (Social Systems and Networks) 
     | 
  
   
     
       
        Guest: Dr. David Gibson (Columbia, Harvard) 
       
      
        -  M. Granovetter. The 
          strength of weak ties. American Journal of Sociology. 81, 
          1287-1303 (1973). (*) 
 
        - T. Schelling. Micomotives and Macrobehavior, Chapter 1. (Norton, 
          1978) (*) 
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 5: 'Small-World' Networks
     | 
  
   
     
      a. 'Small-world' networks, Part 1
     | 
  
   
     
       
        The alpha-model  
          Phase transitions and the small-world phenomenon  
       
      
        -  Handout 6 (*)
 
        - Watts, D. J. Networks, 
          dynamics, and the small-world phenomenon. American Journal of 
          Sociology, (1999). (*)
 
        - Watts, D. J. Small Worlds: The Dynamics of Networks Between Order 
          and Randomness (Princeton, Princeton University Press, 1999), Chapter 
          3.
 
       
        
     | 
  
   
     
      'Small-world' networks, Part 2
     | 
  
   
     
       
        The beta-model  
          Comparisons with real network data  
       
      
        -  Handout 7 (*)
 
        - D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' 
          networks. Nature 393, 440-442 (1998). (*)
 
        - Watts, D. J. Small Worlds: The Dynamics of Networks Between Order 
          and Randomness (Princeton, Princeton University Press, 1999), Chapter 
          3.
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 6: Scale-Free Networks
     | 
  
   
     
       
        Degree distributions  
          Basic scale-free model  
          Comparisons with data  
       
      
        - Handout 8 (*)
 
         
        - Barabasi, 
          A. and Albert, R. Emergence of scaling in random networks. Science 
          286, 509-512 (1999). (*)
 
        -  L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley. Classes 
          of small-world networks. Proceedings of the National Academy 
          of Sciences, 97(21), 11149-11152 (2000) (*)
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 7: Affiliation Networks
     | 
  
   
     
      a. Affiliation networks, Part 1: Empirical properties 
     | 
  
   
     
       
        "Who is the best connected scientist?" 
          Guest Lecture, Prof. Mark Newman (Santa Fe Institute) 
       
      
        - M. E. J. Newman. The 
          structure of scientific collaboration networks. Proceedings of 
          the National Academy of Sciences, 98(2), 404-409. (2000). (*)
 
        -  M. E. J. Newman Who 
          is the best connected scientist? 
          A study of scientific coauthorship networks. (2000). (*)
 
       
        
     | 
  
   
     
      b. Affiliation networks, Part 2: Theoretical models.
     | 
  
   
     
       
        
       
      
        - Handout 9 (*) 
 
        -  M. E. J. Newman, S. H. Strogatz, and D. J. Watts.  Random 
          graphs with arbitrary degree distributions and their applications. 
          (2000). 
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 8: Searching on Networks
     | 
  
   
     
      a. Search Part I: Search on Small-World Networks
     | 
  
   
     
       
        Milgram revisted  
          Searching on small-world networks  
          Searchable small-world networks 
       
      
        - Handout 10 (*)
 
        - J. Kleinfeld. Could It Be 
          a Big World After All? What the Milgram Papers in the Yale Archives 
          Reveal About the Original Small World Study. Working paper, University 
          of Alaska, Fairbanks (Oct 2000).
 
        - J. Kleinberg. The 
          small-world phenomenon: An algorithmic perspective. Cornell Computer 
          Science Technical Report 99-1776, (1999). 
 
       
       | 
  
   
     
      b. Search Part II: Search on Scale-Free Networks
     | 
  
   
     
      
        -  L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search 
          in power-law networks.(*) 
 
       
       | 
  
   
     
      c. Search Part III: Search on Bipartite Networks
     | 
  
   
     
      
        - Handout 11 (*)
 
       
       | 
  
   
     
      d. Search Part IV: Link Structure as Content
     | 
  
   
    
      
        -  J. M. Kleinberg. Authoritative 
          sources in a hyperlinked environment.
 
        - G. W. Flake, S. Lawrence, and C. L. Giles. Efficient 
          identification of web communities. 
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 9: Epidemiological Models of Contagion
     | 
  
   
    
      
        - Watts, D. J. Small Worlds: The Dynamics of Networks Between Order 
          and Randomness (Princeton, Princeton University Press, 1999), Chapter 
          6.
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 10: Percolation Models of Contagion and Robustness
     | 
  
   
    
      
        - D. Stauffer and A. Aharony. Introduction to Percolation Theory. (Taylor 
          and Francis, 1992), Chapter 1. (*) 
 
        - R. Albert and A. L. Barabasi. Error 
          and attack tolerance of complex networks. (*) 
 
        - D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. 
        
 
       
     | 
  
   
    |   | 
  
   
     
      Topic 11: Threshold Models of Binary Decisions, and Contagion
     | 
  
   
     
      
        Two player games and threshold rules 
          Simple model  
          Application to information cascades  
           
         
       
     | 
  
   
    
      
        -  T. Schelling. Hockey helmets, concealed weapons, and daylight saving: 
          A study of binary choices with externalities. Journal of Conflict Resolution, 
          17(3), 381-428 (1973). Also reprinted in T. Schelling. Micomotives and 
          Macrobehavior, Chapter 7. (Norton, 1978) (*) 
 
        - D. J. Watts. 
          A simple model of fads and cascading failures. Santa Fe Institute 
          Working Paper 00-12-062. 
 
       
     |