Question

The Albanian singing flea is hermaphrodite, and at the beginning of the breeding season the population consists of b fleas. At any subsequent time during the breeding season an individual flea has, during any time interval of length δt, independent of previous history and other fleas,
(i) a probability $\alpha \delta t+o(\delta t)$ of producing one new flea,
(ii) a probability $\beta \delta t+o(\delta t)$ of producing two new fleas,
(iii) a probability $o(\delta t)$ of producing more then two new fleas,or dying, as $\delta t \rightarrow 0$

With the first winter frost a few fleas manage to hibernate to serve as the starting population for the next season, and the remainder perish.
$\operatorname{Let} p_{n}(t)$ denote the probability the the total population size is n at time t (for values of t with in the breeding season). Show that for any $\mathrm{n}=1,2, \ldots$

$$
p_{n}^{\prime}(t)=-(\alpha+\beta) n p_{n}(t)+\alpha(n-1) p_{n-1}(t)+\beta(n-2) p_{n-2}(t) .
$$

Find the probability that, at time t, the population has not changed from its original from its original size.

Suppose that the mean number of fleas at time t is

$$
M(t)=\sum_{n=0}^{\infty} n p_{n}(t)
$$

Show that $M^{\prime}(t)=(\alpha+2 \beta) M(t)$ and hence find $M(t)$.

Answer

$$
\begin{aligned}
P(X(t+\delta t)=n+1 \mid X(t)=n) & =\alpha n \delta t+o(\delta t) \\
P(X(t+\delta t)=n+2 \mid X(t)=n) & =\beta n \delta t+o(\delta t) \\
P(X(t+\delta t)=n \mid X(t)=n) & =1-(\alpha+\beta) n \delta t+o(\delta t)
\end{aligned}
$$

Arguing conditionally gives:

$$
\begin{aligned}
p_{n}(t+\delta t)= & p_{n}(t)(1-(\alpha+\beta) n \delta t+o(\delta t)) \\
& +p_{n-1}(t)(\alpha(n-1) \delta t+o(\delta t)) \\
& +p_{n-2}(t)(\beta(n-2) \delta t+o(\delta t))
\end{aligned}
$$

(Note that for $k \leq b p_{k}(t)=0$, so we don't need special equations for $k \leq b+2$)
Thus we have:

$$
\begin{aligned}
\frac{p_{n}(t+\delta t)-p_{n}(t)}{\delta t}= & -(\alpha+\beta) n p_{n}(t)+\alpha(n-1) p_{n-1}(t) \\
& +\beta(n-2) p_{n-2}(t)+o(\delta t)
\end{aligned}
$$

Letting $\delta t \rightarrow 0$ gives

$$
p_{n}^{\prime}(t)=-(\alpha+\beta) n p_{n}(t)+\alpha(n-1) p_{n-1}(t)+\beta(n-2) p_{n-2}(t)
$$

Now $p_{b}(0)=1$ and $p_{n}(0)=0$ for $n \neq b$
So $p_{b}^{\prime}(t)=-(\alpha+\beta) b p_{b}(y)$ and $p_{b}(0)=1$
Thus $p_{b}(t)=e^{-(\alpha+\beta) b t}$

Now

$$
\begin{aligned}
& \quad M(t)=\sum_{n=0}^{\infty} n p_{n}(t) \quad M^{\prime}(t)=\sum_{n=0}^{\infty} n p_{n}^{\prime}(t) \\
& =\sum_{n=0}^{\infty}-n^{2}(\alpha+\beta) p_{n}(t)+\sum_{n=0}^{\infty} \alpha(n-1) n p_{n-1}(t)+\sum_{n=0}^{\infty} \beta(n-2) n p_{n-2}(t) \\
& =\sum_{n=0}^{\infty}-n^{2}(\alpha+\beta) p_{n}(t)+\sum_{n=0}^{\infty} \alpha(n+1) n p_{n}(t)+\sum_{n=0}^{\infty} \beta(n+2) n p_{n}(t) \\
& =\sum^{n} n p_{n}(t)\left[-n^{2}(\alpha+\beta)+\alpha(n+1)+\beta(n+2)\right] \\
& =(\alpha+2 \beta) M(t)
\end{aligned}
$$

Now $M(0)=b$ and so

$$
M(t)=b e^{(\alpha+2 \beta) t}
$$

