Question

Explain what a branching chain is. Suppose a population is descended from a single individual (generation 0). Let $A(s)$ denote the probability generating function for the number of offspring of any individual. Let $F_{n}(s)$ denote the probability generating function for the number of individuals in generation n.

Prove that

$$
\begin{aligned}
& F_{n}(s)=F_{n-1}(A(s)) \quad \text { and dedcue that } \\
& F_{n}(s)=A\left(F_{n-1}(s)\right) .
\end{aligned}
$$

A game is played with coins as follows. Each coin has a probability $\frac{2}{3}$ of showing a head when tossed. Player A starts with one coin. This is given to player B, who takes it and tosses it until the first head is obtained. If the number of tosses needed before the first head is obtained is k , then k coins are given to player A. For the next stage of the game all the coins held by player A are given to player B, who takes each one and tosses it until a head is obtained, independently of the other coins. Again if the number of tosses needed before the first head shows for any particular coin is k , then k coins are given to player A, who therefore finishes this stage of the game with a certain number of coins. This process is repeated for all subsequent stages of the game.

Write down the probability that k tosses occur before the fist head. Use this to show that the probability generating function $A(s)$ for the number if tosses needed before the first heads is $\frac{2}{3-s}$. Use the relation deduced above to show, by induction or otherwise, that the probability generating function for the total number of coins held by player A after n stages of the game is given by

$$
F_{n}(s)=\frac{2\left[2^{n}-1-\left(2^{n-1}-1\right) s\right]}{2^{n+1}-1-\left(2^{n}-1\right) s}
$$

Show that this game terminates with probability 1.

Answer

Suppose we have a population of individuals, each reproducing independently of the others,Suppose the distributions of the number of offspring of all individuals are identical. Let X_{n} denote the number of individuals in generation n. Then $\left(X_{n}\right)$ is a branching Markov chain.

Suppose $P(Z+k)=a_{k}$ and $A(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$
Now $P\left(X_{n}=l \mid X_{n-1}=j\right)=P\left(Z_{1}+\ldots+Z_{j}=l\right)$
$=$ coefficient of s^{l} in $[A(s)]$ as the Z_{i} 's are i.i.d.
So

$$
\begin{aligned}
P\left(X_{n}=l\right) & =\sum_{j=0}^{\infty} P\left(X_{n}=l \mid X_{n-1}=j\right) \\
F_{n}(s) & =\sum_{l=0}^{\infty} \sum_{j=0}^{\infty}\left(\text { coeff of } s^{k} \text { in }[A(s)]^{j}\right) P\left(X_{n-1}=j\right) s^{l} \\
& =\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty}\left(\text { coeff of } s^{k} \text { in }[A(s)]^{j}\right) s^{l}\right) P\left(X_{n-1}=j\right) \\
& =\sum_{j=0}^{\infty} P\left(X_{n-1}=j\right)[A(s)]^{j} \\
& =F_{n-1}(A(s))
\end{aligned}
$$

Now $P\left(X_{0}=1\right)=1$ so $F_{0}(s)=s$. Thus $F_{1}(s)=F_{0}(A(s))=A(s)$

$$
\begin{aligned}
& F_{2}(s)=F_{1}(A(s))=A(A(s)) \\
& F_{n}(s)=\underbrace{A(A(A(\ldots \ldots}_{\mathrm{n} \text { times }}(s)) \ldots))=A\left(F_{n-1}(s)\right)
\end{aligned}
$$

The game is a branching Markov chain. Let X denote the number of tosses before the first head. Then we have
$P(X=k)=\left(\frac{1}{3}\right)^{k} \cdot \frac{2}{3} \quad k=0,1, \ldots$
So $A(s)=\sum\left(\frac{1}{3}\right)^{k} \cdot \frac{2}{3} s^{k}=\frac{2}{3} \frac{1}{1-\frac{s}{3}}=\frac{2}{3-s}$
Now for $\mathrm{n}=1 F_{1}(s)=A(s)$ and the formula reduces to $\frac{2}{3-s}$.
Assume the formula is correct for n .
Then

$$
\begin{aligned}
F_{n+1}(s) & =A\left(F_{n}(s)\right) \\
& =\frac{2}{3-F_{n}(s)} \\
& =\frac{2}{\left\{3-\frac{2\left[2^{n}-1-\left(2^{n-1}-1\right) s\right]}{2^{n+1}-1-\left(2^{n}-1\right) s}\right\}} \\
& =\frac{2 \cdot\left[2^{n+1}-1-\left(2^{n}-1\right) s\right]}{2^{n+2}-1-\left(2^{n+1}-1\right) s}
\end{aligned}
$$

after apporx 3 lines of algebra

Hence the result, by induction.
The probability that the game terminates is the smallest positive root of $s=A(s)$. So $s=\frac{2}{3-s}$, i.e. $s^{2}-3 s+2=0$, giving $(s-1)(s-2)=0 . \mathrm{s}=1$ is the smallest root, so the game terminates with probability 1.

