Question

A random walk has the infinite set {0, 1, 2, ...} as possible states. State 0
is a partially reflecting barrier. If state 0 is occupied at step n then states
0 and 1 are equally likely to be occupied at step n+1 of the random walk.
For all other states, transitions of +1, -1, 0 take place with the probabilities
P, q, 1 — p — q respectively. Let pﬁ) denote the probability that the random
walk is in state k at step n, having started in state j. Derive the difference
equation
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giving clear explanation of the reasoning leading to the equation. Write
down analogous equations for £ = 0 and & = 1. The long-term equilibrium
distribution is given by

. = lim p'%) (G=0,1,2,..)

when these limits exist. Obtain a set of difference equations for (7). Solve
these equations, recursively or otherwise, showing that if p > ¢ there is no
solution, and finding explicit expressions for 7, in the case p < ¢. You may
assume that ¢ # 0.

Answer
Arguing conditionally on the last step gives
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Taking limits as n — oogives

T = pip1+qme1+ (1 —p—qm k>2

1
T = §7T0+C]7T1
1
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Rewriting these equations gives,

1
qmy = §7T0 (1)
1
q7T2+(_p—C])7T1+§7To =0 (2)
qTpp1 + (—=p— @) +pmp—y = 0 (3)
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Using (1) in (2) gives gme = pmy Assuming that gm, = pme_1 gives, using (3)

qTg+1 = PTg
Hence by induction this is true for k£ > 1

k—1 1 k—1
Thus m, = <2_7> :—<B> m k>1
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Now for (7) to be a probability distribution, » m, =1

1= (p k—1
ie. |14 — - =1
( 261; <q> )

If p > ¢ the series diverges, so there is no solution.
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