QUESTION

A line L_{1} passes through the two points $A(2,-4,1)$ and $B(5,2,-2)$ and a second line L_{2} passes through the two points $C(2,-2,5)$ and $D(2,-1,7)$.
(i) Obtain the vector equations of the lines L_{1} and L_{2}.
(ii) Find the point of intersection of L_{1} and L_{2}.
(iii) Show that the lines L_{1} and L_{2} are perpendicular.
(iv) Find the area of the triangle $A B D$.
(v) Find the acute angle between the line L_{2} and the line joining the points B and D.

ANSWER

(i) $\overrightarrow{A B}=(5-2,2-(-4),-2-2)=(3,6,-3)$

Therefore the equation of L_{1} is $\mathbf{r}=(2,-4,1)+s(3,6,-3)$
$\overrightarrow{C D}=(2-2,-1-(-2), 7-5)=(0,1,2)$
Therefore the equation of L_{2} is $\mathbf{r}=(2,-2,5)+t(0,1,2)$
(ii) At the point of intersection

$$
\begin{aligned}
2+3 s & =2, \Rightarrow s=0 \\
-4+6 s & =-2+t, \Rightarrow t=-2 \\
1-3 s & =5+2 t
\end{aligned}
$$

The third equation is satisfied by $s=0, t=-2$ therefore the point of intersection is $(2,-4,1)+0(3,6,-3)=(2,-4,1)$, i.e. point A.
(iii) L_{1} is parallel to $(3,6,-3), L_{2}$ is parallel to $(0,1,2)$.
$(3,6,-3) \cdot(0,1,2)=0+6-6=0$ therefore the lines are perpendicular.
(iv) Since L_{1} and L_{2} intersect at A, area $A B D=\frac{1}{2}(A B)(A D)$

But
$A B=\left\{(5-2)^{2}+(2-(-4))^{2}+(-2-1)^{2}\right\}^{\frac{1}{2}}=\{9+36+9\}^{\frac{1}{2}}=\sqrt{54}$
$A B=\left\{(2-2)^{2}+(-1-(-4))^{2}+(7-1)^{2}\right\}^{\frac{1}{2}}=\{0+9+36\}^{\frac{1}{2}}=\sqrt{45}$
Therefore the area is $\frac{1}{2} \sqrt{54} \sqrt{45}=\frac{1}{2} 3 \sqrt{6} 3 \sqrt{5}=\frac{9}{2} \sqrt{30} \sim 24.65$
(v) $\overrightarrow{B D}=(2-5,-1-2,7-(-2))=(-3,-3,9)=3(-1,-1,3)$
L_{2} is parallel to $(0,1,2)$ therefore

$$
\cos \theta=\frac{(-1,-1,3) \cdot(0,1,2)}{\sqrt{\left((-1)^{2}+(-1)^{2}+3^{2}\right)} \sqrt{\left(1^{2}+3^{2}\right)}}=\frac{0-1+6}{\sqrt{11} \sqrt{5}}=\frac{5}{\sqrt{55}}
$$

$\theta=47.6^{\circ}(=0.831$ radians $)$

