QUESTION

It is known from experience that the mean breaking strength of a particular brand of fibre is 9.25 N with a standard deviation of 1.20 N , where N denotes Newtons. A sample of 36 fibres was recently selected at random from the production and found to have a mean breaking strength of 8.90 N .
(i) State the standard error of the sample mean.
(ii) Construct a 95% confidence interval for the mean breaking strength foe the fibre currently being produced, and determine how large a sample would have been required to obtain an interval with length less then 0.5 N .
(iii) Using a 5% test of significance, can we conclude from the sample measurements that the strength of the fibre has changed?

ANSWER
We are given that $\mu=9.25 N, \sigma=1.20 N, n=36$
(i) Standard error of sample mean is $\frac{\sigma}{\sqrt{n}}=\frac{1.20}{\sqrt{36}}=0.20 \mathrm{~N}$
(ii) The confidence interval is double sided, so the interval is $\bar{x} \pm(1.96)(0.20)=8.90 \pm 0.392$ i.e. 8.508 to 9.292
The interval length is $2(1.96) \frac{\sigma}{\sqrt{n}}=2(1.96) \frac{(1.2)}{\sqrt{n}}=\frac{4.704}{\sqrt{n}}$
Length <0.5 if $\frac{4.704}{\sqrt{n}}<0.5$, i.e. $\sqrt{n}>\frac{4.704}{0.5}=9.408$ i.e. $n>$ $(9.408)^{2}=88.5$ therefore sample size must be at least 89 .
(iii) Hypothesis $H_{0}: \mu=9.25 N, H_{1}: \mu \neq 9.25 N$ Standard deviation $=$ 1.2 N

This is a two sided hypothesis
Test procedure: accept H_{0} if $\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}>-1.96$ or <1.96 for a 5% significance test.
Now $\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{8.90-9.25}{0.20}=-\frac{0.35}{0.20}=-1.75$
This is inside the interval $(-1.96,1.96)$, hence sample results suggest that the strength of the fibre has not changed.

