QUESTION

(i) Show that the function

$$f(x) = x^2 e^{-x}$$

has two stationary points and determine their nature.

- (ii) Determine the points of inflection of the function f(x).
- (iii) Given that x = 1 is an approximate solution of the equation $3x^2e^{-x} = 1$ use the Newton Raphson formula ONCE to obtain a better approximation (correct to four decimal place).

ANSWER

(i) $f(x) = x^2 e^{-x}$ $\frac{df}{dx} = x^2 (-e^{-x}) + e^{-x} (2x) = (2x - x^2)e^{-x}$

There is a stationary point when $\frac{df}{dx} = 0$, i.e. $2x - x^2 = 0$ $(e^{-x} \neq 0)$ therefore x(2-x) = 0, which implies that x = 0 or x = 2

$$\frac{d^2 f}{dx^2} = (2x - x^2)(-e^{-x}) + e^{-x}(2 - 2x)$$
$$= e^{-x}(-2x + x^2 + 2 - 2x)$$
$$= (x^2 - 4x + 2)e^{-x}$$

When x = 0, $\frac{d^2 f}{dx^2} = 2e^{-0} = 2 > 0$ therefore f has a minimum at x = 0When x = 2, $\frac{d^2 f}{dx^2} = (2^2 - 4(2) + 2)e^{-2} = -\frac{2}{e^2} < 0$ therefore f has a maximum at x = 2

(ii)
$$\frac{d^2f}{dx^2} = 0$$
 when $x^2 - 4x + 2 = 0$, $x = \frac{4 \pm \sqrt{((-4)^2 - 4(1)2)}}{2} = \frac{4 \pm \sqrt{8}}{2} = \frac{4 \pm \sqrt{8}}{2}$

$$\frac{d^3 f}{dx^3} = (x^2 - 4x + 2)(-e^{-x} + (2x - 4)e^{-x})$$

$$= e^{-x}(-x^2 + 4x - 2 + 2x - 4)$$

$$= e^{-x}(-x^2 + 6x - 6)$$

$$= -(x^2 - 6x + 6)e^{-x}$$

When
$$x = 2 + \sqrt{2}$$
, $\frac{d^3 f}{dx^3} \sim 2.83e^{-(2+\sqrt{2})} \neq 0$
When $x = 2 - \sqrt{2}$, $\frac{d^3 f}{dx^3} \sim -2.83e^{-(2-\sqrt{2})} \neq 0$

Therefore there are inflection points at $x = 2 + \sqrt{2}$ and $x = 2 - \sqrt{2}$

(iii)
$$3x^2e^{-x} = 1$$
, $g(x) = 3x^2e^{-x} - 1 = 0$, $\frac{dg}{dx} = 3\frac{df}{dx} = 3(2x - x^2)e^{-x}$
 $x_1 = 1 - \frac{g(1)}{g'(1)} = 1 - \frac{0.1036}{2.2073} = 0.9531$