Question

A spring pendulum consists of a mass m on the end of a light spring of stiffness
k.,the other end of which is fixed to a stationary support. The natural length
of the spring is /. Find the Langrangain of the system in terms of r and
0, and hence derive the equations of motion. Putting r = [ + %2 + € and
neglecting all terms of second order of smallness in € and 6 show that the
equations of motion reduce to

meé + ke = 0, (l—i—%)é—i—g@—o.

Deduce that w,, the frequency of radial oscillations, must be greater than wy,

the frequency of angular oscillations and that w, = 2wy when k£ = %.
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Euler-Lagrange equations:
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Put r =1+ % +¢€ = 1r = ¢, = € in the Euler-Lagrange equations and

neglect quadratic terms in 6, 9, é, €, €, €, giving
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Whence both 6 and € undergo simple harmonic motion with frequencies
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