Question

A spring pendulum consists of a mass m on the end of a light spring of stiffness k, the other end of which is fixed to a stationary support. The natural length of the spring is l. Find the Langrangain of the system in terms of r and θ, and hence derive the equations of motion. Putting $r=l+\frac{m g}{k}+\epsilon$ and neglecting all terms of second order of smallness in ϵ and θ show that the equations of motion reduce to

$$
m \ddot{\epsilon}+k \epsilon=0, \quad\left(l+\frac{m g}{k}\right) \ddot{\theta}+g \theta=0 .
$$

Deduce that ω_{ϵ}, the frequency of radial oscillations, must be greater than ω_{θ}, the frequency of angular oscillations and that $\omega_{\epsilon}=2 \omega_{\theta}$ when $k=\frac{3 m g}{l}$.

Answer

$$
\begin{array}{rlrl}
\text { K.E. } & =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \\
\text { P.E. } & =-m g r \cos \theta+\frac{1}{2} k(r-l)^{2} \\
L & =\frac{1}{2} m\left(\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+m g r \cos \theta-\frac{1}{2} k(r-l)^{2}\right. \\
\frac{\partial L}{\partial \theta} & =-m g r \sin \theta & \frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta} \\
\frac{\partial L}{\partial r} & =m r \dot{\theta}^{2}+m g \cos \theta & \frac{\partial L}{\partial \dot{r}}=m \dot{r}
\end{array}
$$

Euler-Lagrange equations:
$\theta: \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=0 \Rightarrow r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}+g r \sin \theta=0$
$r: \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=0 \Rightarrow \ddot{r}-r \dot{\theta}^{2}-g \cos \theta+\frac{k}{m}(r-l)=0$
Put $r=l+\frac{m g}{k}+\epsilon \Rightarrow \dot{r}=\dot{\epsilon}, \ddot{r}=\ddot{\epsilon}$ in the Euler-Lagrange equations and neglect quadratic terms in $\theta, \dot{\theta}, \ddot{\theta}, \epsilon, \dot{\epsilon}, \ddot{\epsilon}$, giving
$\left(l+\frac{m g}{k}\right) \ddot{\theta}+0+g \theta=0 \Rightarrow\left(l+\frac{m g}{k}\right) \ddot{\theta}+g \theta=0$
$\ddot{\epsilon}-0-g+\frac{k}{m} \epsilon=0 \Rightarrow \ddot{\epsilon}+\frac{k}{m} \epsilon=0$
Whence both θ and ϵ undergo simple harmonic motion with frequencies
$\omega_{\theta}^{2}=\frac{g}{\left(l+\frac{m g}{k}\right)}, \quad \omega_{\epsilon}^{2}=\frac{k}{m}$
Therefore $\frac{\omega_{\epsilon}^{2}}{\omega_{\theta}^{2}}=1+\frac{k l}{m g}>1 \Rightarrow \omega_{\epsilon}>\omega_{\theta}$
Put $k=\frac{3 m g}{l} \Rightarrow \frac{\omega_{\epsilon}^{2}}{\omega_{\theta}^{2}}=4 \Rightarrow \omega_{\epsilon}=2 \omega_{\theta}$

