Question

A particle of mass m slides under gravity on a smooth wire in the shape of the cycloid $x=a(\theta-\sin \theta), y=a(1+\sin \theta), 0 \leq \theta \leq 2 \pi$ as shown below PICTURE
(a) Show that the kinetic energy of the bead is $m a^{2}(1-\cos \theta) \dot{\theta}^{2}$.
(b) Find the Lagrangian and deduce the equation of motion

$$
2 \sin \frac{\theta}{2} \ddot{\theta}+\cos \frac{\theta}{2} \dot{\theta}^{2}-\frac{g}{a} \cos \frac{\theta}{2}=0 .
$$

(c) Rewrite the above equation in terms of $u=\cos \frac{\theta}{2}$ and deduce that, irrespective of the starting position, the period of oscillation is the same as that of a plane pendulum of length $4 a$ undergoing small oscillations.
(d) Suppose two identical beads are released from rest with $\theta=0$ and $\theta=\frac{\pi}{2}$ respectively. Where do they collide? At what time do they collide? What happens subsequently? (Assume that the coefficient of restitution, e, is unity.)

Answer

$x=a(\theta-\sin \theta) \quad y=a(1+\cos \theta)$
$\dot{x}=a \dot{\theta}(1-\cos \theta) \quad \dot{y}=-a \dot{\theta} \sin \theta$

$$
\begin{aligned}
K . E . & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2} m a^{2} \dot{\theta}^{2}\left[1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right] \\
& =m a^{2} \dot{\theta}^{2}(1-\cos \theta)
\end{aligned}
$$

$$
\begin{aligned}
P . E . & =m g y \\
& =m g a(1+\cos \theta) \\
L & =\text { K.E. }-P . E . \\
& =m a^{2} \dot{\theta}^{2}(1-\cos \theta)-m g a(1+\cos \theta) \\
\frac{\partial L}{\partial \dot{\theta}} & =2 m a^{2}(1-\cos \theta) \dot{\theta} \\
& =4 m a^{2} \dot{\theta} \sin ^{2} \frac{\theta}{2} \\
\frac{\partial L}{\partial \theta} & =m a^{2} \dot{\theta}^{2} \sin \theta+m g a \sin \theta
\end{aligned}
$$

Euler-Lagrange equation:

$$
\begin{aligned}
\frac{d}{d t}\left(4 m a^{2} \dot{\theta} \sin ^{2} \frac{\theta}{2}\right)-m a^{2} \dot{\theta}^{2} \sin \theta-m g a \sin \theta & =0 \\
4 m a^{2}\left[\ddot{\theta} \sin ^{2} \frac{\theta}{2}+\dot{\theta}^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]-m a\left(a \dot{\theta}^{2}+g\right) \cdot 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} & =0 \\
2 \sin \frac{\theta}{2}+\left(\cos \frac{\theta}{2}\right) \dot{\theta}^{2}-\frac{g}{a} \cos \frac{\theta}{2} & =0 \quad(*)
\end{aligned}
$$

(cancelling $a \sin \frac{\theta}{2} \neq 0$ for general motion.)
$u=\cos \frac{\theta}{2} \Rightarrow \dot{u}=-\frac{1}{2} \sin \frac{\theta}{2} \dot{\theta} \Rightarrow \ddot{u}=-\frac{1}{2}\left[\frac{1}{2} \cos \frac{\theta}{2} \dot{\theta}^{2}+\sin \frac{\theta}{2} \ddot{\theta}\right]$
Hence $\left(^{*}\right)$ can be written as:

$$
\ddot{u}+\frac{g}{4 a} u=0
$$

which implies Simple Harmonic Motion with frequency $\sqrt{\frac{g}{4 a}}$ i.e. a pendulum with length 4a.
The period is independent of the starting position so the beads will collide at the bottom of the cardioid $(\pi a, 0)$ after a quarter of a period $\left(2 \pi \frac{\sqrt{\frac{4 a}{g}}}{4}=\pi \sqrt{\frac{a}{g}}\right)$.
The collisions are perfectly elastic at the bottom.

Before: $\xrightarrow{u_{1}} \xrightarrow{u_{1}}$

After:

linear momentum: $\left.\begin{array}{rl}m u_{1}+m u_{2} & =m v_{1}+m v_{2} \\ v_{2}-v_{1} & =-\left(u_{2}-u_{1}\right)\end{array}\right\} \Rightarrow \begin{aligned} v_{2} & =u_{1} \\ v_{1} & =u_{2}\end{aligned}$
i.e. the beads exchange their speeds and then repeat the motion (and collisions at the bottom) indefinitely.

