Question

If 16 digits are chosen from a table of random digits, what is the probability that their average will lie between 4 and 6 ?

Answer

Here $n=16$
Let X_{i} be the chosen digit in the i th draw.
$X_{i}=0,1,2,3,4,5,6,7,8,9$ with probability $\frac{1}{10}$
Therefore $E\left(X_{i}\right)=\mu=\frac{0+1+2+\ldots+9}{10}=\frac{9 \times 10}{2 \times 10}=4.5$
$E\left(X_{i}^{2}\right)=\frac{0^{2}+1^{2}+2^{2}+\ldots+9^{2}}{10}=\frac{9(10)(19)}{6 \times 10}=\frac{57}{2}=28.5$
$\left[\right.$ Remember $\left.1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}\right]$
Now $\sigma^{2}=E\left(X_{i}^{2}\right)-\left\{E\left(X_{i}\right)\right\}^{2}=28.5-(4.5)^{2}=8.25$
We want $P\left(4<\bar{X}_{n}<6\right)$ where $\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \sim N(0,1)$ approximately.

$$
\begin{aligned}
& =P\left\{\frac{\sqrt{16}}{\sqrt{8.25}}(4-4.5)<\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}<\frac{\sqrt{16}}{\sqrt{8.25}}(6-4.5)\right\} \\
& =P\{-0.69<Z<2.09\} \\
& =0.7366
\end{aligned}
$$

