Question

Sketch each of the plane curves γ given by the following parametrizations:

(i)
$$\gamma(t) = (t, e^t)$$

(iv)
$$\gamma(t) = (t - \sin t, 1 + \cos t)$$

(ii)
$$\gamma(t) = (t^3, t^4)$$

$$\gamma(t) = (t, e^t) & (iv) \gamma(t) = (t - \sin t, 1 + \cos t) \\
\gamma(t) = (t^3, t^4) & (v) \gamma(t) = (e^{kt} \cos t, e^{kt} \sin t) (k \neq 0) \\
\gamma(t) = (t - t^2, t + t^2) & (vi) \gamma(t) = (t^2 - 1, t^3 - t)$$

(iii)
$$\gamma(t) = (t - t^2, t + t^2)$$

(vi)
$$\gamma(t) = (t^2 - 1, t^3 - t)$$

Answer

(i)

$$K(t) = e^{t}(1 + e^{2t})^{-\frac{3}{2}} > 0$$

$$K'(t) = e^{t}(1 + 2^{t})^{-\frac{5}{2}}.(1 - 2e^{2t})$$

So K' = 0 where $e^{2t} = \frac{1}{2}$.

(ii) $K(t) = 12t^{-}(9 + 16t^{2})^{-\frac{3}{2}}$, defined for all $t \neq 0$. (Note also $\gamma'(0) = 0$).

$$|K| \to \infty \quad \text{as} \quad t \to 0 \\
 \to 0 \quad \text{as} \quad t \to \infty
 \right\}$$

No vertices

At origin, deceptive@ $\gamma(t)$ slows to instantaneous halt.

$$\frac{dy}{dx}$$
 exists here (= 0), but $\frac{d^2y}{dx^2}$ doesn't.

(iii) x + y = 2t, $-x + y = 2t^2$, so rotation by 45 degrees shows curve is a parabola.

$$K(t) = 4(2 + 8t^2)^{-\frac{3}{2}}$$
, max when $t = 0$.

(iv) This is a cycloid: take standard cycloid (for circle of radius 1), reflect in the x-axis and translate by 2 in the y-direction.

 $\gamma'(t) = (1 - \cos t, -\sin t)$, which is zero when $t = 2n\pi \ (n = 0, \pm 1, \pm 2, \cdots)$.

$$K(t) = -\frac{(1-c) \cdot c + ss}{((1-c)^2 + s^2)^{3/2}}$$

$$= \frac{1-c}{(2-2c)^{\frac{3}{2}}}$$

$$= 2^{-\frac{3}{2}} (1-c)^{-\frac{1}{2}}$$
where $c = \cos t \ (\neq 1)$
and $s = \sin t$

$$= 1/4 \sin \frac{t}{2}$$

defined except when $t = 2n\pi$, $(n \in \mathbf{Z})$.

So k > 0, and as t goes from 0 to 2π we see K increases to $\frac{1}{4}$ (at $t = \pi$), then increases again.

(v)
$$K(t) = e^{-kt}(1 + K^2)^{-\frac{1}{2}}$$
.
 $\to 0$ as $t \to +\infty$
 $\to 0\infty$ as $t \to -\infty$, i.e. as $\gamma(t) \to (0,0)$

Spiral - radius increases exponentially.

(vi)

y(t) goes

While x(t) goes

If $t \to -t$, then $x \to x$ and $y \to -y$.

$$K(t) = (6t^2 + 2)(9t^4 - 2t^2 + 1)^{-\frac{3}{2}}, > 0$$

defined for all $t \in \Re$ since $9u^2 - 2u + 1$ has no real roots.

$$K'(t) = -24t(9t^4 + 4t^2 - 1)(9t^4 - 2t^2 + 1)^{-\frac{5}{2}}, = 0$$
 when $t = 0$ or $t^2 = \frac{1}{9}(-2 + \frac{13}{9})$.