Question

Two tanks both initially contain 200 L of fresh water. Starting at $t=0$ brine containing $5 \mathrm{~kg} / \mathrm{L}$ of salt is added to the first tank at the rate of $2 \mathrm{~L} / \mathrm{min}$. This first tank is continually stirred. The uniform solution from the first tank is transferred to the second tank at the rate of $2 \mathrm{~L} / \mathrm{min}$. This second tank is also stirred. A uniform mixture leaves the second tank also at a rate of $2 \mathrm{~L} / \mathrm{min}$. What is the concentration of the mixture leaving the first tank at time t ? What is the concentration of the mixture leaving the second tank at time t ?

Answer

$\begin{array}{ll}x(t)=\text { salt in tank } 1 & x(0)=0 \\ y(t)=\text { salt in tank } 2 & y(0)=0\end{array}$
The water balance is such that both tanks contain 200 litres at all times.
Salt balance in tank 1:
rate of change $=$ rate of salt in - rate of salt out of salt

$$
\begin{array}{ccccc}
\frac{d x}{d t} & = & 5 * 2 & - & \frac{x}{200} * 2 \tag{1}\\
\frac{d x}{d t} & = & 10 & - & \frac{x}{100}
\end{array}
$$

Salt balance in tank 2:
rate of change $=$ rate of salt in - rate of salt out of salt

$$
\begin{array}{ccccc}
\frac{d y}{d t} & = & \frac{x}{200} * 2 & - & \frac{y}{200} * 2 \tag{2}\\
\frac{d y}{d t} & = & \frac{x}{100} & - & \frac{y}{100}
\end{array}
$$

Solve (1) as a linear equation with $x(0)=0$, and we get

$$
x(t)=1000\left(1-e^{-\frac{t}{100}}\right)
$$

Put this solution into (2) and solve as a linear equation with $y(0)=0$, and we get

$$
y(t)=1000\left(1-e^{-\frac{t}{100}}-\frac{t e^{-\frac{t}{100}}}{1000}\right)
$$

So the concentration is $\frac{x}{100}$ and $\frac{y}{100}$.

