FUNCTIONAL ANALYSIS
PRODUCT SPACES

Suppose we have { X, }aca-

We define a new space called the product space.

x € H Xoifr = {24} aca zo € X

acA

Alternatively we could define [],c4 X, as the set of all functions whose
domain is A and such that f(«a) € X,.

We can define a topology as follows.

Let G={r € X 2, €U, i=1,2,...,n for some n}
U,, open in X,,

We take all such sets GG as a basis for the topology in X.
A directed set {Xg} is a set in which

(i) there is a partial ordering of the indices f,
(ii) given ﬁ1525|53 such that 53 > 51, 63 > ﬁg.

A directed set {z3} is said to converge to a limit point z if, given any
neighbourhood U of 3 an index  such that x, € U whenever v > (.

Convergence in a product space is co-ordinate-wise convergence i.e.

{27} w2 € X &1 — 2, € X, for every a

Vector Spaces F is called a vector space over the field F' if E' is a set with
two operations of addition and scalar multiplication, the first mapping
E x E to E and the second mapping F' x F to E in such a way that
the following conditions hold.

(i) E is an Abelian group under addition,
(ii) a(r+y) = az + ay,

(iii) (a+ Bz = ax + Pz,

(vi) a(Br) = (aB)z,

(v) Lz ==



Normed Vector Spaces Let E be a vector space over the real or complex
numbers. FE is a normed space if every x € V is associated with a
non-negative real number ||z|| which has the properties:

(@) Xl =0 2=0,
(ii) [[Az]l = [A[lIX]),
(i) [lz +yll = [l=] + [[Y].

We can always define a metric on a normed vector space by p(x,y) =
||z — y|| but the converse is not necessarily true.

Example Consider ¢*°, the space of all bounded sequences {z;}. Define
p(z,y) =2 ”’l;—f‘ Then this is a metric.

in a topological space a set B is said to be bounded if, given any neighbour-
hood U of the origin, for some n, nU D B.

In a normed vector space there are always bounded neighbourhood of
the origin €’'g’ By = {z : ||z| < 1}

In ¢°° a basic neighbourhood U is defined as follows. Let ¢ > 0. Let
ning ... n, be a finite sequence of integers let U = {{z,,} : |x,,| < ei =

1,2,...,k}.
Now choose m & {niny...n;} and let V = {{z,} : |x,,]| < 1}.
Then NV D U for any N i.e. mno neighbourhood of the origin is
bounded.

A Banach Space is a normed vector space which is complete for the metric
defined by the norm.
The classical examples of Banach spaces are

¢P- the space of all sequences {,} such that 3°° |z,[P < occ.

L?(0,1)- the space of all measurable functions f(x) such that [, |f(2)|P dz <

00.
These are examples of more general spaces LY (X, p).

The norms usually defined on them are
1
ol = (X 1)

LP - ||f|| = (/01 |f(:v)|de)E where f = g means f = g p.p.



Lemma If a and (8 are non-negative real numbers and if 0 < A < 1 then
a3 < Aa+ (1 — \)B with equality < a = 3.

Proof Let ¢(t) = (1—\)+At—t* then ¢'(t) = A\(1—t*"1) therefore ¢'(t) < 0
ift<1l, =0ift=1and > 0if ¢t > 1. Therefore ¢(1) < ¢(t) for all
t > 0 with equality &t =1

(1 = X))+ M =t > 0 with equality < ¢t = 1.
(1—/\)—1—/\%—% > 0 with equality & a =
ie. a?BI < da+ (1—\)B.

Holder’s Inequality let p > 2 and let % + % =1

(i) for any {x,} € ¢* and {y,} € (¢

1
q

S gl < (S laal?)” (3 al?)

(ii) for any f € LY g € LY

[1saids < ([ 1spas)” ([ 1giae)’

Proof (i) First suppose that > |z,|P =1 3 |y,|? = 1. By the Lemma,

taking A\ =1, 1 -\ =1
P q

[ Xnyln] < Azl 4+ (1= M)lya|*
therefore Y |z, y,| < 1.

Now consider the sequences

Tn Yn
&n = i oL Th= T
(X [znl?)> (X [yn|®) s
Then Y |€,[P =1 > || = 1 therefore Y |&,m,| < 1. Hence the

result.

(ii) Proved in a similar way.

Minkowski’s Inequality (i) Let p > 1. If {z,,} € *{y,} € (? then {z, +
yn} € ¥ and

Al

(X fon+ 5al™) < (Slanl)? + (3 o)



(ii) If f,g € LY then f + g € L? and

(J1r+apas) < ([1srae)" + ([ 10 ar)’

Proof (i) For any N

N N N
Slza+yal® < 3 |20+ yalP ol + Z Zn + Yn|” " |y
1 1

N 5 /N i
< (Z\l‘n\p> (Z\ +y nl‘“’”)
1

1

=

S

() = () ()

Hence the result.

(ii) Similar proof.
Using the above results it is easy to verify that /7 and LP are
normed vector spaces.

s ) > | < oo}
[zl = Xl
201 = {f@): [ 1f@)]dr < o)

7= [ 1)l da
> {{x,} : {z,}bounded}
[{zn}| = sup{|aal}
L=(01) = {f(x) [f(z)] < M p.p}
[fI} = sup{M : | f(z)| < M p.p.}



Lemma The normed vector space £ is complete < > 7° &, exists in £/ when-
ever {£,} is a sequence of vectors in E such that > [|&,]| < oo.

Proof (i) Let n, =37, &,

n

< X lgli<e

r=m+1

> ¢

r=m+1

||77n - an =

If m is sufficiently large. Therefore {n,} is a cauchy sequence
therefore Y 7° &, exists.

(ii) Let {¢,} be a cauchy sequence in E. We can find {n,} such that
HCHT-H - CTLTH < %7“
Write &1 = Gy & = ooy — Gas
> |[& ]| < oo therefore Y0 & — (asn — oo ie. (, — ( as
r — oo therefore (,, — ( as n — .

Theorem (Riesz-Fischer) The L? spaces are complete.

Proof Let {f,} be a sequence in L” such that >{° || F,|| = m < co.
Put g,(z) = 37 | f+(2)].

At every point x the increasing sequence g,(x) has a limit (finite or
infinite). Denote this limit by g(x) then g(z) is measurable and

[l9@)rde = lim [ lga(@)? de < m?

therefore g(x) [ LY and g(z) < oo p.p. therefore 3-5° f,,(z) is absolutely
convergent p.p. to some function f(z).

fl@) =3 fo(z)

| n
1

< (i Ifr(w))) < (g(x))"

n+1

Since (g(z)) € L?

lim/ (f: |fr(x)|>p dx:/limiﬁr(a:)\pdazzo

n+1 n+1

by Lebesgues’s Dominated Convergence theorem therefore
[1f(x) =37 fr(x)]” — 0 as n — oo therefore

[|f(z) =" fr(z)]| — 0 as n — oc.
Hence by the Lemma L* is complete.
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Other examples of Banach Spaces (i) The set C'(X) of all real-valued,
or complex valued, functions defined and continuous on a complex
space X where [|F|| = sup{|f(z)|: z € X}.

Convergence in this norm is uniform.

(ii) Set of all functions f(z) analytic on the unit disc with

I} = sup{[f(2)] : [2] < 1}

(iii) Set of all functions f(z) analytic on the unit disc with

17l = [[,_ 17ldwdy

(iv) The set of all functions f(z) harmonic on the unit circle with

11} = sup{|f(2)] : |2] < 1}
[f(2) is harmonic if 1 [ f(2)dz = f(20) C={z:]z— 2| = L}



