
FUNCTIONAL ANALYSIS
PRODUCT SPACES

Suppose we have {Xα}α∈A.

We define a new space called the product space.

x ∈
∏

α∈A

Xαifx = {xα}α∈A xα ∈ Xα

Alternatively we could define
∏

α∈AXα as the set of all functions whose
domain is A and such that f(α) ∈ Xα.

We can define a topology as follows.

Let G = {x ∈ X : xαi ∈ Uαi i = 1, 2, . . . , n for some n}

Uαi open in Xαi

We take all such sets G as a basis for the topology in X.

A directed set {Xβ} is a set in which

(i) there is a partial ordering of the indices β,

(ii) given β1β2∃β3 such that β3 > β1, β3 > β2.

A directed set {xβ} is said to converge to a limit point x if, given any
neighbourhood U of x∃ an index β such that xγ ∈ U whenever γ > β.

Convergence in a product space is co-ordinate-wise convergence i.e.

{xβ} → x ∈ X ⇔ xβα → xα ∈ Xα for every α

Vector Spaces E is called a vector space over the field F if E is a set with
two operations of addition and scalar multiplication, the first mapping
E × E to E and the second mapping F × E to E in such a way that
the following conditions hold.

(i) E is an Abelian group under addition,

(ii) α(x+ y) = αx+ αy,

(iii) (α + β)x = αx+ βx,

(vi) α(βx) = (αβ)x,

(v) 1.x = x.
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Normed Vector Spaces Let E be a vector space over the real or complex
numbers. E is a normed space if every x ∈ V is associated with a
non-negative real number ‖x‖ which has the properties:

(i) ‖X‖ = 0⇔ x = 0,

(ii) ‖λx‖ = |λ|‖X‖,

(iii) ‖x+ y‖ = ‖x‖+ ‖Y ‖.

We can always define a metric on a normed vector space by p(x, y) =
‖x− y‖ but the converse is not necessarily true.

Example Consider `∞, the space of all bounded sequences {xi}. Define

p(x, y) =
∑ |yi−xi|

24 . Then this is a metric.

in a topological space a set B is said to be bounded if, given any neighbour-
hood U of the origin, for some n, nU ⊃ B.

In a normed vector space there are always bounded neighbourhood of
the origin e’g’ B1 = {x : ‖x‖ ≤ 1}

In `∞ a basic neighbourhood U is defined as follows. Let ε > 0. Let
n1n2 . . . nk be a finite sequence of integers let U = {{xn} : |xni | < ε i =
1, 2, . . . , k}.

Now choose m 6∈ {n1n2 . . . nk} and let V = {{xn} : |xm| < 1}.

Then NV ⊃ U for any N i.e. no neighbourhood of the origin is
bounded.

A Banach Space is a normed vector space which is complete for the metric
defined by the norm.

The classical examples of Banach spaces are

`P - the space of all sequences {xn} such that
∑∞

n=1 |xn|
p <∞.

LP (0, 1)- the space of all measurable functions f(x) such that
∫ 1
0 |f(x)|

p dx <

∞.

These are examples of more general spaces LP (X,µ).

The norms usually defined on them are

`P : ‖x‖ =
(

∑

|xn|p
)

1

p

LP : ‖f‖ =
(∫ 1

0
|f(x)|P dx

)

1

p

where f = g means f ≡ g p.p.
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Lemma If α and β are non-negative real numbers and if 0 < λ < 1 then
αλβ1−λ ≤ λα+ (1− λ)β with equality ⇔ α = β.

Proof Let φ(t) = (1−λ)+λt−tλ then φ′(t) = λ(1−tλ−1) therefore φ′(t) < 0
if t < 1, = 0 if t = 1 and > 0 if t > 1. Therefore φ(1) ≤ φ(t) for all
t > 0 with equality ⇔ t = 1

(1− λ) + λt = tλ ≥ 0 with equality ⇔ t = 1.

(1− λ) + λα
β
− αλ

βλ
≥ 0 with equality ⇔ α = β

i.e. αλβ1−λ ≤ λα+ (1− λ)β.

Holder’s Inequality let p > 2 and let 1
p
+ 1

q
= 1

(i) for any {xn} ∈ `p and {yn} ∈ `q

∑

|xnyn| ≤
(

∑

|xn|
p
)

1

p
(

∑

|yn|
q
)

1

q

(ii) for any f ∈ LP g ∈ Lq

∫

|fg| dx ≤
(∫

|f |p dx
)

1

p
(∫

|g|q dx
)

1

q

Proof (i) First suppose that
∑

|xn|
p = 1

∑

|yn|
q = 1. By the Lemma,

taking λ = 1
p
, 1− λ = 1

q
,

|Xny|n| ≤ λ|xn|
P + (1− λ)|yn|

q

therefore
∑

|xnyn| ≤ 1.

Now consider the sequences

ξn =
xn

(
∑

|xn|p)
1

p

ηn =
yn

(
∑

|yn|q)
1

q

Then
∑

|ξn|
p = 1

∑

|ηn|
q = 1 therefore

∑

|ξnηn| ≤ 1. Hence the
result.

(ii) Proved in a similar way.

Minkowski’s Inequality (i) Let p > 1. If {xn} ∈ `p{yn} ∈ `p then {xn +
yn} ∈ `P and

(

∑

|xn + yn|
P
)

1

p ≤
(

∑

|xn|
p
)

1

p +
(

∑

|yn|
p
)

1

p
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(ii) If f, g ∈ LP then f + g ∈ Lp and

(∫

|f + g|p dx
) 1

p

≤
(∫

|f |p dx
) 1

p

+
(∫

|g|p dx
) 1

p

Proof (i) For any N

N
∑

1

|xn + yn|
p ≤

N
∑

1

|xn + yn|
p−1|xn|+

N
∑

1

|xn + yn|
p−1|yn|

≤

(

N
∑

1

|xn|
p

)

1

p
(

N
∑

1

|xn + y)n|q(p−1)

)

1

q

+

(

N
∑

1

|xn|
p

)

1

p
(

N
∑

1

|xn + yn|
q(p−1)

)

1

q

=
(

∑

|xn + yn|
p
)

1

q







(

N
∑

1

|xn|
p

)

1

p

+

(

N
∑

1

|yn|
p

)

1

p







(

N
∑

1

|xn + yn|
P

)

1

p

≤

(

N
∑

1

|xn|
p

)

1

p

+

(

N
∑

1

|yn|
p

)

1

p

≤

(

∞
∑

1

|xn|
p

)
1

p

+

(

∞
∑

1

|yn|
p

)
1

p

Hence the result.

(ii) Similar proof.

Using the above results it is easy to verify that `p and Lp are
normed vector spaces.

`1 : {{xn} :
∑

|xn| <∞}

‖{xn}‖ =
∑

|xn|

L1(0 1) : {f(x) :
∫ 1

0
|f(x)| dx <∞}

‖f‖ =
∫ 1

0
|f(x)| dx

`∞ : {{xn} : {xn}bounded}

‖{xn}‖ = sup{|xn|}

L∞(0 1) : {f(x) |f(x)| < M p.p}

‖f‖ = sup{M : |f(x)| < M p.p.}
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Lemma The normed vector space E is complete⇔
∑∞

1 ξn exists in E when-
ever {ξn} is a sequence of vectors in E such that

∑

‖ξn‖ <∞.

Proof (i) Let ηn =
∑n

r=1 ξr

‖ηn − ηm‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

r=m+1

ξr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
n
∑

r=m+1

‖ξr‖ < ε

If m is sufficiently large. Therefore {ηn} is a cauchy sequence
therefore

∑∞
1 ξn exists.

(ii) Let {ζn} be a cauchy sequence in E. We can find {nr} such that
‖ζnr+1

− ζnr‖ ≤
1
2
r

Write ξ1 = ζn1
ξr = ζnr+1

− ζnr
∑

‖ξr‖ < ∞ therefore
∑n

r=1 ξr → ζ as n → ∞ i.e. ζnr → ζ as
r →∞ therefore ζn → ζ as n→∞.

Theorem (Riesz-Fischer) The Lp spaces are complete.

Proof Let {fn} be a sequence in L
p such that

∑∞
1 ‖Fn‖ = m <∞.

Put gn(x) =
∑n

1 |fr(x)|.

At every point x the increasing sequence gn(x) has a limit (finite or
infinite). Denote this limit by g(x) then g(x) is measurable and

∫

|g(x)|p dx = lim
n→∞

∫

|gn(x)|
p dx ≤ mp

therefore g(x)
∫

LP and g(x) <∞ p.p. therefore
∑∞

1 fn(x) is absolutely
convergent p.p. to some function f(x).

∣

∣

∣

∣

∣

f(x)−
n
∑

1

fr(x)

∣

∣

∣

∣

∣

p

≤





∞
∑

n+1

|fr(x))





p

≤ (g(x))p

Since (g(x)) ∈ Lp

lim
∫





∞
∑

n+1

|fr(x)|





p

dx =
∫

lim
∞
∑

n+1

|fr(x)|
p dx = 0

by Lebesgues’s Dominated Convergence theorem therefore
∫

|f(x)−
∑n

1 fr(x)|
p → 0 as n→∞ therefore

||f(x)−
∑n

1 fr(x)|| → 0 as n→∞.

Hence by the Lemma LP is complete.
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Other examples of Banach Spaces (i) The set C(X) of all real-valued,
or complex valued, functions defined and continuous on a complex
space X where ‖F‖ = sup{|f(x)| : x ∈ X}.

Convergence in this norm is uniform.

(ii) Set of all functions f(z) analytic on the unit disc with

‖F‖ = sup{|f(z)| : |z| ≤ 1}

(iii) Set of all functions f(z) analytic on the unit disc with

‖F‖ =
∫∫

|z|≤1
|f | dxdy

(iv) The set of all functions f(z) harmonic on the unit circle with

‖f‖ = sup{|f(z)| : |z| ≤ 1}

[f(z) is harmonic if 1
`

∫

C f(z) dz = f(z0) C = {z : |z− z0| =
`

2π
}].
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