FUNCTIONAL ANALYSIS PRODUCT SPACES

Suppose we have $\{X_{\alpha}\}_{{\alpha}\in A}$.

We define a new space called the product space.

$$x \in \prod_{\alpha \in A} X_{\alpha} \text{if } x = \{x_{\alpha}\}_{\alpha \in A} \ x_{\alpha} \in X_{\alpha}$$

Alternatively we could define $\prod_{\alpha \in A} X_{\alpha}$ as the set of all functions whose domain is A and such that $f(\alpha) \in X_{\alpha}$.

We can define a topology as follows.

Let
$$G = \{x \in X : x_{\alpha_i} \in U_{\alpha_i} \ i = 1, 2, \dots, n \text{ for some } n\}$$

 U_{α_i} open in X_{α_i}

We take all such sets G as a basis for the topology in X.

A directed set $\{X_{\beta}\}$ is a set in which

- (i) there is a partial ordering of the indices β ,
- (ii) given $\beta_1\beta_2\exists\beta_3$ such that $\beta_3 > \beta_1$, $\beta_3 > \beta_2$.

A directed set $\{x_{\beta}\}$ is said to converge to a limit point x if, given any neighbourhood U of $x\exists$ an index β such that $x_{\gamma} \in U$ whenever $\gamma > \beta$.

Convergence in a product space is co-ordinate-wise convergence i.e.

$$\{x^{\beta}\} \to x \in X \Leftrightarrow x^{\beta}_{\alpha} \to x_{\alpha} \in X_{\alpha} \text{ for every } \alpha$$

Vector Spaces E is called a vector space over the field F if E is a set with two operations of addition and scalar multiplication, the first mapping $E \times E$ to E and the second mapping $F \times E$ to E in such a way that the following conditions hold.

- (i) E is an Abelian group under addition,
- (ii) $\alpha(x+y) = \alpha x + \alpha y$,
- (iii) $(\alpha + \beta)x = \alpha x + \beta x$,
- (vi) $\alpha(\beta x) = (\alpha \beta)x$,
- (v) 1.x = x.

Normed Vector Spaces Let E be a vector space over the real or complex numbers. E is a normed space if every $x \in V$ is associated with a non-negative real number ||x|| which has the properties:

(i)
$$||X|| = 0 \Leftrightarrow x = 0$$
,

(ii)
$$\|\lambda x\| = |\lambda| \|X\|$$
,

(iii)
$$||x + y|| = ||x|| + ||Y||$$
.

We can always define a metric on a normed vector space by p(x, y) = ||x - y|| but the converse is not necessarily true.

Example Consider ℓ^{∞} , the space of all bounded sequences $\{x_i\}$. Define $p(x,y) = \sum \frac{|y_i - x_i|}{2^4}$. Then this is a metric.

in a topological space a set B is said to be bounded if, given any neighbourhood U of the origin, for some $n, nU \supset B$.

In a normed vector space there are always bounded neighbourhood of the origin e'g' $B_1 = \{x : ||x|| \le 1\}$

In ℓ^{∞} a basic neighbourhood U is defined as follows. Let $\varepsilon > 0$. Let $n_1 n_2 \dots n_k$ be a finite sequence of integers let $U = \{\{x_n\} : |x_{n_i}| < \varepsilon \ i = 1, 2, \dots, k\}$.

Now choose $m \notin \{n_1 n_2 \dots n_k\}$ and let $V = \{\{x_n\} : |x_m| < 1\}$.

Then $NV\supset U$ for any N i.e. no neighbourhood of the origin is bounded.

A Banach Space is a normed vector space which is complete for the metric defined by the norm.

The classical examples of Banach spaces are

 ℓ^P - the space of all sequences $\{x_n\}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

 $L^P(0,1)$ - the space of all measurable functions f(x) such that $\int_0^1 |f(x)|^p dx < \infty$.

These are examples of more general spaces $L^{P}(X,\mu)$.

The norms usually defined on them are

$$\ell^P : ||x|| = \left(\sum |x^n|^p\right)^{\frac{1}{p}}$$

$$L^{P}: ||f|| = \left(\int_{0}^{1} |f(x)|^{P} dx\right)^{\frac{1}{p}} \text{ where } f = g \text{ means } f \equiv g \text{ p.p.}$$

Lemma If α and β are non-negative real numbers and if $0 < \lambda < 1$ then $\alpha^{\lambda} \beta^{1-\lambda} \leq \lambda \alpha + (1-\lambda)\beta$ with equality $\Leftrightarrow \alpha = \beta$.

Proof Let $\phi(t) = (1-\lambda) + \lambda t - t^{\lambda}$ then $\phi'(t) = \lambda(1-t^{\lambda-1})$ therefore $\phi'(t) < 0$ if t < 1, = 0 if t = 1 and > 0 if t > 1. Therefore $\phi(1) \le \phi(t)$ for all t > 0 with equality $\Leftrightarrow t = 1$

 $(1 - \lambda) + \lambda t = t^{\lambda} \ge 0$ with equality $\Leftrightarrow t = 1$.

 $(1-\lambda) + \lambda \frac{\alpha}{\beta} - \frac{\alpha^{\lambda}}{\beta^{\lambda}} \ge 0$ with equality $\Leftrightarrow \alpha = \beta$

i.e. $\alpha^{\lambda}\beta^{1-\lambda} \leq \lambda\alpha + (1-\lambda)\beta$.

Holder's Inequality let p > 2 and let $\frac{1}{p} + \frac{1}{q} = 1$

(i) for any $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^q$

$$\sum |x_n y_n| \le \left(\sum |x_n|^p\right)^{\frac{1}{p}} \left(\sum |y_n|^q\right)^{\frac{1}{q}}$$

(ii) for any $f \in L^P$ $g \in L^q$

$$\int |fg| \, dx \le \left(\int |f|^p \, dx\right)^{\frac{1}{p}} \left(\int |g|^q \, dx\right)^{\frac{1}{q}}$$

Proof (i) First suppose that $\sum |x_n|^p = 1$ $\sum |y_n|^q = 1$. By the Lemma, taking $\lambda = \frac{1}{p}, \ 1 - \lambda = \frac{1}{q},$

$$|X_n y| n| \le \lambda |x_n|^P + (1 - \lambda)|y_n|^q$$

therefore $\sum |x_n y_n| \leq 1$.

Now consider the sequences

$$\xi_n = \frac{x_n}{(\sum |x_n|^p)^{\frac{1}{p}}} \quad \eta_n = \frac{y_n}{(\sum |y_n|^q)^{\frac{1}{q}}}$$

Then $\sum |\xi_n|^p = 1$ $\sum |\eta_n|^q = 1$ therefore $\sum |\xi_n \eta_n| \le 1$. Hence the result.

(ii) Proved in a similar way.

Minkowski's Inequality (i) Let p > 1. If $\{x_n\} \in \ell^p \{y_n\} \in \ell^p$ then $\{x_n + y_n\} \in \ell^P$ and

$$\left(\sum |x_n + y_n|^P\right)^{\frac{1}{p}} \le \left(\sum |x_n|^p\right)^{\frac{1}{p}} + \left(\sum |y_n|^p\right)^{\frac{1}{p}}$$

(ii) If $f, g \in L^P$ then $f + g \in L^p$ and

$$\left(\int |f+g|^p dx\right)^{\frac{1}{p}} \le \left(\int |f|^p dx\right)^{\frac{1}{p}} + \left(\int |g|^p dx\right)^{\frac{1}{p}}$$

Proof (i) For any N

$$\begin{split} \sum_{1}^{N} |x_{n} + y_{n}|^{p} & \leq \sum_{1}^{N} |x_{n} + y_{n}|^{p-1} |x_{n}| + \sum_{1}^{N} |x_{n} + y_{n}|^{p-1} |y_{n}| \\ & \leq \left(\sum_{1}^{N} |x_{n}|^{p} \right)^{\frac{1}{p}} \left(\sum_{1}^{N} |x_{n} + y_{n}|^{q(p-1)} \right)^{\frac{1}{q}} \\ & + \left(\sum_{1}^{N} |x_{n}|^{p} \right)^{\frac{1}{p}} \left(\sum_{1}^{N} |x_{n} + y_{n}|^{q(p-1)} \right)^{\frac{1}{q}} \\ & = \left(\sum_{1} |x_{n} + y_{n}|^{p} \right)^{\frac{1}{q}} \left[\left(\sum_{1}^{N} |x_{n}|^{p} \right)^{\frac{1}{p}} + \left(\sum_{1}^{N} |y_{n}|^{p} \right)^{\frac{1}{p}} \right] \\ & \left(\sum_{1}^{N} |x_{n} + y_{n}|^{p} \right)^{\frac{1}{p}} \leq \left(\sum_{1}^{N} |x_{n}|^{p} \right)^{\frac{1}{p}} + \left(\sum_{1}^{N} |y_{n}|^{p} \right)^{\frac{1}{p}} \\ & \leq \left(\sum_{1}^{\infty} |x_{n}|^{p} \right)^{\frac{1}{p}} + \left(\sum_{1}^{\infty} |y_{n}|^{p} \right)^{\frac{1}{p}} \end{split}$$

Hence the result.

(ii) Similar proof.

Using the above results it is easy to verify that ℓ^p and L^p are normed vector spaces.

$$\ell^{1} : \{\{x_{n}\}: \sum |x_{n}| < \infty\}$$

$$\|\{x_{n}\}\| = \sum |x_{n}|$$

$$L^{1}(0 \ 1) : \{f(x): \int_{0}^{1} |f(x)| dx < \infty\}$$

$$\|f\| = \int_{0}^{1} |f(x)| dx$$

$$\ell^{\infty} : \{\{x_{n}\}: \{x_{n}\} \text{bounded}\}$$

$$\|\{x_{n}\}\| = \sup\{|x_{n}|\}$$

$$L^{\infty}(0 \ 1) : \{f(x) |f(x)| < M \ p.p\}$$

$$\|f\| = \sup\{M: |f(x)| < M \ p.p.\}$$

Lemma The normed vector space E is complete $\Leftrightarrow \sum_{1}^{\infty} \xi_{n}$ exists in E whenever $\{\xi_{n}\}$ is a sequence of vectors in E such that $\sum \|\xi_{n}\| < \infty$.

Proof (i) Let $\eta_n = \sum_{r=1}^n \xi_r$

$$\|\eta_n - \eta_m\| = \left\| \sum_{r=m+1}^n \xi_r \right\| \le \sum_{r=m+1}^n \|\xi_r\| < \varepsilon$$

If m is sufficiently large. Therefore $\{\eta_n\}$ is a cauchy sequence therefore $\sum_{1}^{\infty} \xi_n$ exists.

(ii) Let $\{\zeta_n\}$ be a cauchy sequence in E. We can find $\{n_r\}$ such that $\|\zeta_{n_{r+1}} - \zeta_{n_r}\| \leq \frac{1}{2}r$ Write $\xi_1 = \zeta_{n_1} \ \xi_r = \zeta_{n_{r+1}} - \zeta_{n_r}$ $\sum \|\xi_r\| < \infty$ therefore $\sum_{r=1}^n \xi_r \to \zeta$ as $n \to \infty$ i.e. $\zeta_{n_r} \to \zeta$ as $r \to \infty$ therefore $\zeta_n \to \zeta$ as $n \to \infty$.

Theorem (Riesz-Fischer) The L^p spaces are complete.

Proof Let $\{f_n\}$ be a sequence in L^p such that $\sum_{1}^{\infty} ||F_n|| = m < \infty$.

Put
$$g_n(x) = \sum_{1}^{n} |f_r(x)|$$
.

At every point x the increasing sequence $g_n(x)$ has a limit (finite or infinite). Denote this limit by g(x) then g(x) is measurable and

$$\int |g(x)|^p dx = \lim_{n \to \infty} \int |g_n(x)|^p dx \le m^p$$

therefore $g(x) \int L^P$ and $g(x) < \infty$ p.p. therefore $\sum_{1}^{\infty} f_n(x)$ is absolutely convergent p.p. to some function f(x).

$$\left| f(x) - \sum_{1}^{n} f_r(x) \right|^p \le \left(\sum_{n=1}^{\infty} |f_r(x)| \right)^p \le (g(x))^p$$

Since $(g(x)) \in L^p$

$$\lim \int \left(\sum_{n=1}^{\infty} |f_r(x)|\right)^p dx = \int \lim \sum_{n=1}^{\infty} |f_r(x)|^p dx = 0$$

by Lebesgues's Dominated Convergence theorem therefore

$$\int |f(x) - \sum_{1}^{n} f_r(x)|^p \to 0 \text{ as } n \to \infty \text{ therefore}$$

$$||f(x) - \sum_{1}^{n} f_r(x)|| \to 0 \text{ as } n \to \infty.$$

Hence by the Lemma L^P is complete.

- Other examples of Banach Spaces (i) The set C(X) of all real-valued, or complex valued, functions defined and continuous on a complex space X where $||F|| = \sup\{|f(x)| : x \in X\}$.

 Convergence in this norm is uniform.
 - (ii) Set of all functions f(z) analytic on the unit disc with

$$||F|| = \sup\{|f(z)| : |z| \le 1\}$$

(iii) Set of all functions f(z) analytic on the unit disc with

$$||F|| = \iint_{|z| \le 1} |f| \, dx dy$$

(iv) The set of all functions f(z) harmonic on the unit circle with

$$||f|| = \sup\{|f(z)| : |z| \le 1\}$$

$$[f(z) \text{ is harmonic if } \frac{1}{\ell} \int_C f(z) dz = f(z_0) \ C = \{z: |z-z_0| = \frac{\ell}{2\pi}\}].$$