Question

Determine whether or not there exists a number $\alpha>0$, so that there exists a hyperbolic triangle T whose interior angles are $\frac{\pi}{3}, \frac{\pi}{5}$, and α, and whose hyperbolic area area(T) is $\frac{\pi}{25}$. If such an α exists, determine its value (or values).
Answer
By the Gauss-Bonnet Formula:
$\operatorname{area}(\tau)=\pi-$ (sum of interior angles)
and so

$$
\begin{aligned}
\operatorname{area}(\tau) & =\pi-\left(\frac{\pi}{3}+\frac{\pi}{5}+\alpha\right) \\
& =\pi\left(1-\frac{1}{3}-\frac{1}{5}\right)-\alpha \\
& =\pi \frac{7}{15}-\alpha
\end{aligned}
$$

Since the only requirement is that area $(\tau)>0$, there is such an α, namely $\alpha=\left(\frac{7}{15}-\frac{1}{25}\right) \pi=\frac{32}{75} \pi$

