Question

Determine whether or not there exists a number $\alpha > 0$, so that there exists a hyperbolic triangle T whose interior angles are $\frac{\pi}{3}$, $\frac{\pi}{5}$, and α , and whose hyperbolic area area(T) is $\frac{\pi}{25}$. If such an α exists, determine its value (or values).

Answer

By the Gauss-Bonnet Formula: $area(\tau) = \pi - \text{(sum of interior angles)}$ and so

$$\operatorname{area}(\tau) = \pi - \left(\frac{\pi}{3} + \frac{\pi}{5} + \alpha\right)$$
$$= \pi \left(1 - \frac{1}{3} - \frac{1}{5}\right) - \alpha$$
$$= \pi \frac{7}{15} - \alpha$$

Since the only requirement is that $area(\tau) > 0$, there is such an α , namely $\alpha = \left(\frac{7}{15} - \frac{1}{25}\right)\pi = \frac{32}{75}\pi$