Question

In the Poincáre disc \mathbf{D}, consider the parallelogram P_{s} bounded by the four hyperbolic lines

$$
\begin{aligned}
\ell_{1}=\{z \in \mathbf{D}: \operatorname{Re}(z) & =0\} \\
\ell_{2}=\{z \in \mathbf{D}:|z-2 i| & =\sqrt{3}\} \\
\ell_{3}=\{z \in \mathbf{D}:|z+2 i| & =\sqrt{3}\}
\end{aligned}
$$

and

$$
\ell_{s}=\left\{z \in \mathbf{D}:|z-s|=\sqrt{s^{2}-1}\right\}
$$

wheres is real and $s>1$. Determine the values of s for which P_{s} has finite hyperbolic area.

Answer

P_{s} has finite area when ℓ_{s} and ℓ_{2} (or ℓ_{s} and ℓ_{3} by symmetry) are parallel but not ultraparallel (that is, when $\ell_{2} \ell_{s}$ intersect at the boundary S^{1} at infinity of \mathbf{D}).
Since this occurs when $\ell_{2} \ell_{s}$ are tangent, the distance between their centers is equal to the sum of their radii, and so
$|s-2 i|=\sqrt{3}+\sqrt{s^{2}-1}$
$\sqrt{s^{2}+4}=\sqrt{3}+\sqrt{s^{2}-1}$
Squaring:
$s^{2}+4=3+s^{2}-1+2 \sqrt{3} \sqrt{s^{2}-1}$
$2=2 \sqrt{3} \sqrt{s^{2}-1}$
$s^{2}-1=\frac{1}{3}, \quad s^{2}=\frac{4}{3}, \quad s=\frac{2}{\sqrt{3}}$ and so P_{s} has finite hyperbolic area for $s \geq \frac{2}{\sqrt{3}}$.

