Question

In the Poincáre disc \mathbf{D} , consider the parallelogram P_s bounded by the four hyperbolic lines

$$\ell_1 = \{ z \in \mathbf{D} : \text{Re}(z) = 0 \}$$

 $\ell_2 = \{ z \in \mathbf{D} : |z - 2i| = \sqrt{3} \}$
 $\ell_3 = \{ z \in \mathbf{D} : |z + 2i| = \sqrt{3} \}$

and

$$\ell_s = \{ z \in \mathbf{D} : |z - s| = \sqrt{s^2 - 1} \}$$

where s is real and s > 1. Determine the values of s for which P_s has finite hyperbolic area.

Answer

 P_s has finite area when ℓ_s and ℓ_2 (or ℓ_s and ℓ_3 by symmetry) are parallel but not ultraparallel (that is, when $\ell_2\ell_s$ intersect at the boundary S^1 at infinity of \mathbf{D}).

Since this occurs when $\ell_2\ell_s$ are tangent, the distance between their centers is equal to the sum of their radii, and so

$$|s - 2i| = \sqrt{3} + \sqrt{s^2 - 1}$$
$$\sqrt{s^2 + 4} = \sqrt{3} + \sqrt{s^2 - 1}$$

Squaring:
$$s^2 + 4 = 3 + s^2 - 1 + 2\sqrt{3}\sqrt{s^2 - 1}$$

$$2 = 2\sqrt{3}\sqrt{s^2 - 1}$$

 $s^2-1=\frac{1}{3}, \quad s^2=\frac{4}{3}, \quad s=\frac{2}{\sqrt{3}}$ and so P_s has finite hyperbolic area for $s\geq \frac{2}{\sqrt{3}}.$