Question

Let A be the Euclidean circle in \mathbf{H} with Euclidean centre $1+2 i$ and Euclidean radius 1 . We know from class that A is also a hyperbolic circle. Determine its hyperbolic centre and hyperbolic radius.

Answer

The hyperbolic center is the midpoint of the hyperbolic line segment joining two points on a hyperbolic diameter, such as $1+i$ and $1+3 i$. Since $d_{\mathbf{H}}(1+$ $i, 1+3 i)=\ln (3)$, the hyperbolic center is the point $1+a i$ which satisfies

$$
\begin{gathered}
d_{\mathbf{H}}(1+i, 1+a i)=\frac{1}{2} \ln (3)=d_{\mathbf{H}}(1+a i, 1+3 i) \\
\ln (a)=d s \frac{1}{2} \ln (3)=\ln \left(\frac{3}{a}\right)=\ln (3)-\ln (a)
\end{gathered}
$$

$\underline{\text { So, } a=\sqrt{3}}$ and so the hyperbolic center is $1+\sqrt{3} i$.
The hyperbolic radius is $d_{\mathbf{H}}(1+i, 1+\sqrt{3} i)=\frac{1}{2} \ln (3)$.

