Question

Calculate the perimeter of the regular hyperbolic pentagon \mathbf{R}, all of whose interior angles are $\frac{\pi}{2}$.

Answer

If we are to draw R in the Poincáre Disc, we could do so so that the vertices are at $r e^{i \frac{2 \pi k}{5}}(0 \leq k \leq 4)$ for some $0<r<1$. Joining the angles to the vertices then breaks R into 5 triangles with interior angles $\frac{\pi}{4}, \frac{\pi}{4}, \frac{2 \pi}{5}$.
Let T be one of these triangles; and let c be the side opposite the vertex with angle $\frac{2 \pi}{5}$. Then, by the law of cosines II:

$$
\begin{aligned}
\cosh (c) & =\frac{\cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)+\cos \left(\frac{2 \pi}{5}\right)}{\sin \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)} \\
& =\frac{\frac{1}{2}+\cos \left(\frac{2 \pi}{5}\right)}{\frac{1}{2}}=x
\end{aligned}
$$

Then, $\frac{1}{2}\left(e^{c}+e^{-c}\right)=x$, so $\begin{aligned} & e^{c}+e^{-c}-2 x=0 \\ & e^{2 c}-2 x e^{c}+1=0\end{aligned}$

$$
\begin{aligned}
e^{c} & =\frac{1}{2}\left(2 x \pm \sqrt{4 x^{2}-4}\right) \\
& =x+\sqrt{x^{2}-1}
\end{aligned}
$$

So perimeter of R is $5 c=5 \ln \left(x+\sqrt{x^{2}-1}\right)$
where $x=1+2 \cos \left(\frac{2 \pi}{5}\right)$.

