Question

Let ℓ be the closed hyperbolic line segment in the upper half-plane **H** joining $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and $-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$. Determine the two points which break ℓ into three segments of equal hyperbolic length. [Note that you won't be able to find these points explicitly, but you will be able to derive conditions determining them.]

Answer

By symmetry, the two points to be calculated are $e^{i\theta}$ and $e^{i(\pi-\theta)}$ where $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ (since $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i = e^{i\frac{\pi}{4}}$.

The hyperbolic length of the line segment joining $e^{i\frac{\pi}{4}}$ and $e^{i\theta}$ is

$$\int_{\frac{\pi}{4}}^{\theta} \frac{1}{\sin(t)} dt = \ln|\csc(t) - \cot(t)|_{\frac{\pi}{4}}^{\theta}$$

$$= \ln \frac{|\csc(\theta) - \cot(\theta)|}{|\csc(\frac{\pi}{4}) - \cot(\frac{\pi}{4})|}$$

$$= \ln \frac{|\csc(\theta) - \cot(\theta)|}{\sqrt{2} - 1}$$

(Parametrizing the line segment by $z(t)=e^{it}$ and using that the element of arc length is $\frac{1}{{\rm Im}(z)}|\,dz|)$

The hyperbolic length of the line segment joining $e^{i\theta}$ and $e^{i(\pi-\theta)}$ is twice the length of the line segment joining $e^{i\theta}$ and $e^{i\frac{\pi}{2}}$, which is then

$$2\int_{\theta}^{\frac{\pi}{2}} \frac{1}{\sin(t)} dt = 2\ln|\csc(t) - \cot(\theta)|_{\theta}^{\frac{\pi}{2}}$$
$$= 2\ln\frac{|\csc(\frac{\pi}{2}) - \cot(\frac{\pi}{2})|}{|\csc(\theta) - \cot(\theta)|}$$
$$= 2\ln\frac{1}{|\csc(\theta) - \cot(\theta)|}$$

Hence, θ satisfies

$$\ln \frac{(\csc(\theta) - \cot(\theta))}{\sqrt{2} - 1} = \ln \frac{1}{(\csc(\theta) - \cot(\theta))^2}$$

and so
$$(\csc(\theta) - \cot(\theta))^3 = \sqrt{2} - 1$$

 $\frac{(1 - \cos(\theta)^3 = (\sqrt{2} - 1)\sin^3(\theta)}{(\text{far enough since they don't have calculations.})}$