Coordinate Geometry

Equations of Second degree

The problem dealt with here is the following, given an expression quadratic in x and y, what curve does it represent in rectangular cartesian co-ordinates. To answer this question we shall need to be able to translate and rotate axes in cartesian co-ordinates.
Translation

Rotation

$$
\begin{aligned}
& x=O M=O N-M N=O N-Q R=X \cos \alpha-Y \sin \alpha \\
& y=M P=M R+R P=Q N+R P=X \sin \alpha+Y \cos \alpha \\
& x=X \cos \alpha-Y \sin \alpha \quad X=x \cos \alpha+y \sin \alpha \\
& y=X \sin \alpha+Y \cos \alpha \longleftrightarrow Y=y \cos \alpha-x \sin \alpha
\end{aligned}
$$

Using these transformations it can be shown that the following cases occur. The equation $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ represents
I) A parabola (including the degenerate case of parallel lines) if $B^{2}-4 A C=0$.
II) An ellipse, or possibly no real locus, if $B^{2}-4 A C<0$. The ellipse is a circle if $B=0$ and $A=C$. It may degenerate to a point.
III) A hyperbola (or a pair of intersecting straight lines) if $B^{2}-4 A C>0$.

To reduce an equation to a standard form
I) rotate the axes through angle α, to make the product term vanish $\left(\tan 2 \alpha=\frac{B}{A-C}\right)$
II) and III) First translate the origin so that the terms of degree 1 vanish. Then rotate the new axes through angle α, to make the product term vanish $\left(\tan 2 \alpha=\frac{B}{A-C}\right)$
For proofs of the above assertions see D.S.Jones and D.W.Jordan Introductory Analysis Volume 1 pp54-58.
Example
i) Investigate the conic $3 x^{2}+5 x y-2 y^{2}-x+5 y-2=0$
$B^{2}-4 A C=25+24=49>0$
So we have a hyperbola or a pair of lines.
Put $x=X+h \quad y=Y+k$
Equation (1) then becomes

$$
\begin{align*}
& 3(X+h)^{2}+5(X+h)(Y+k)-2(Y+k)^{2}-(X+h)+5(Y+k)-2=0 \\
& 3 X^{2}+5 X Y-2 Y^{2}+X(6 h+5 k-1)+Y(5 h-4 k+5)+3 h^{2} \\
& \quad+5 h k-2 k^{2}-h+5 k-2=0 \quad \text { (2) } \tag{2}
\end{align*}
$$

We choose h, k to satisfy
$6 h+5 k-1=0 \quad 5 h-4 k+5=0$
so $h=-\frac{3}{7} \quad k=\frac{5}{7}$
Equation (2) then becomes $3 X^{2}+5 X Y-2 Y^{2}=0$
$(3 X-Y)(X+2 Y)=0$
so it is a pair of straight lines.
ii) $x y+2 x+y=0 \quad B^{2}-4 A C=1>0$
so we have a hyperbola or a pair of lines.
$x=X+h \quad y=Y+k$ gives
$(X+h)(Y+k)+2(X+h)+(Y+k)=0$
$X Y+X(k+2)+Y(h+1)+h k+2 h+k=0$
we choose $h=-1 \quad k=-2$ so $X Y-2=0$. A rectangular hyperbola.
Now rotate through α
$X=\xi \cos \alpha-\eta \sin \alpha \quad Y=\xi \sin \alpha+\eta \cos \alpha$
$X Y=(\xi \cos \alpha-\eta \sin \alpha)(\xi \sin \alpha+\eta \cos \alpha)$

$$
=\xi^{2} \frac{1}{2} \sin 2 \alpha-\eta^{2} \frac{1}{2} \sin 2 \alpha+\xi \eta \cos 2 \alpha=2
$$

choose α so that $\cos 2 \alpha=0$
so $2 \alpha=\frac{\pi}{2} \quad \alpha=\frac{\pi}{4}$
$X Y-2=0$ becomes $\xi^{2}-\eta^{2}=4$
DIAGRAM

