Coordinate Geometry

In this section we shall discuss various co-ordinate systems in 2 and 3 dimensions and equations for a variety of curves.

Cartesian coordinates are formed by two sets of parallel lines, usually orthogonal, although not necessarily so. A point is specified by an ordered pair (a, b), and can be thought of as the intersection of the lines x = a and y = b.

You will be familiar with many equations and the corresponding curves in rectangular cartesian co-ordinates. You should note that the shape of a curve connected with an equation depends on the co-ordinate system.

e.g. $x^2 + y^2 = 1$ is the equation of a circle in rectangular cartesian coordinates, but in oblique cartesian co-ordinates it represents an ellipse.

Polar Co-ordinates

This system is set up with an origin O and a direction fixed through O. The co-ordinates of a point P are specified as the distance OP and the angle OP makes with the fixed direction. Thus we have $P(r,\theta)$. Each pair of numbers specifies a point, but without any restrictions on r and θ a point may be assigned more than one set of co-ordinates.

e.g
$$(1,0)$$
 $(1,2\pi)$

If we interpret negative r as reflected through the origin then (1,0) $(-1,\pi)$. In order to achieve uniqueness we make the restriction r > 0, and we restrict θ to belong to some interval of length 2π . e.g $-\pi < \theta \le \pi$ is the most common. In describing some curves with more than one point in a given

direction like spirals it is however convenient to relax this restriction on θ . We shall always take $r \geq 0$ however. There is still a slight problem about the origin O. Clearly r=0, but what about θ ? We do not specify co-ordinates uniquely for O, but if we obtain r=0 from an equation then that will correspond to O.

Just as the grid for Cartesian co-ordinates consists of lines x=const, y=constso the grid for polar co-ordinates consists of r=const (circles centre O), θ =const (half-lines starting at O).

We can transform from cartesian to polar co-ordinates as follows.

If P has cartesian co-ordinates (x, y) and polar co-ordinates (r, θ) then $r = \sqrt{x^2 + y^2}$, $\tan \theta = \frac{y}{x}$, $x = r \cos \theta$, $y = r \sin \theta$.

since if
$$(x,y) = (1,1)$$
 $\frac{y}{x} = 1$ and $\theta = \frac{\pi}{4}$ and if $(x,y) = (-1,-1)$ $\frac{y}{x} = 1$ but $\theta = -\frac{3\pi}{4}$

Note that it is ambiguous to write $\theta = \tan^{-1} \frac{y}{x}$ since if (x,y) = (1,1) $\frac{y}{x} = 1$ and $\theta = \frac{\pi}{4}$ and if (x,y) = (-1,-1) $\frac{y}{x} = 1$ but $\theta = -\frac{3\pi}{4}$ We could write unambiguously $\theta = \tan^{-1} \frac{y}{x}$ where $0 < \theta < \pi$ if y > 0 and $-\pi < \theta < \pi$ if y < 0

(We still need the special cases x = 0, y = 0 for completeness) but it is better to draw a diagram as well.

Notice that to say "the point P has co-ordinates (a,b)" is ambiguous out of context. It depends what co-ordinate system we are using.

So rectangular cartesia P=(2,1) 60° oblique, same O and xaxis $P=(2-\frac{1}{\sqrt{3}})$ polars, same O and xaxis $P=(\sqrt{5},0.464)$ (radians)

Some Equations in Polar Co-ordinates

i) Straight line

Since the cartesian equation is ax + by + c = 0we use $x = r \cos \theta$, $y = r \sin \theta$ to obtain

$$r(a\cos\theta + b\sin\theta) + c = 0 \quad (*)$$

alternatively we have $r\cos(\theta - \alpha) = p$ (*)

You should try and relate the two forms of equation above. Note that the equation $\theta=\frac{\pi}{4}$ does not represent the whole line

You should analyse what happens to the equations (*) when the line passes through O.

ii) circle

A circle centred at O has equation r = a.

A circle having O on the circumference and the initial line as diameter.

DIAGRAM

 $r = a\cos\theta$

DIAGRAM

 $r = a\cos(\theta - \alpha)$

DIAGRAM

Applying the cosine formula to the triangle POC gives

$$a^2 = r^2 + d^2 - 2rd\cos(\theta - \alpha).$$

Again you should convert from cartesians to polars and try to relate the equations.

We now consider slopes of tangents in polar co-ordinates.

$$\tan \phi \approx \frac{PN}{NP'} \approx \frac{r \delta \theta}{\delta r} \approx r \frac{d\theta}{dr}$$

$$PN = OP \sin PON = r \sin \delta \theta$$

$$PN = OP\sin PON = r\sin \theta\theta$$

$$P'N = OP' - ON = r + \delta r - r \cos \delta \theta = \delta r + r(1 - \cos \delta \theta)$$
$$= \delta r + r * 2 \sin^2 \frac{1}{2} \delta \theta$$

$$\tan OP'P = \frac{PN}{P'N} = \frac{r\sin\delta\theta}{\delta r + r(2\sin^2\frac{1}{2}\delta\theta)} = \frac{r * 2\sin\frac{1}{2}\delta\theta\cos\frac{1}{2}\delta\theta}{\delta r + r(2\sin^2\frac{1}{2}\delta\theta)}$$

$$= \frac{r\frac{\sin\frac{1}{2}\delta\theta}{\frac{1}{2}\delta\theta}\frac{\delta\theta}{\delta r}\cos\frac{1}{2}\delta\theta}{1 + r\frac{\sin\frac{1}{2}\delta\theta}{\frac{1}{2}\delta\theta}\frac{\delta\theta}{\delta r}\sin\frac{1}{2}\delta\theta}$$

$$\rightarrow \frac{r * 1 * \frac{d\theta}{dr} * 1}{1 + r * 1 * \frac{d\theta}{dr} * 0} = r\frac{d\theta}{dr} \text{ as } P' \to P$$

$$\tan \phi = r \frac{d\theta}{dr}, \quad \cot \phi = \frac{1}{r} \frac{dr}{d\theta}$$

You should check through the above in the case when $\delta r < 0$, or OP' < ON.

Example

Consider the circle $r = a \cos \theta$

DIAGRAM

$$\frac{dr}{d\theta} = -a\sin\theta \qquad \frac{1}{r}\frac{dr}{d\theta} = -\tan\theta = \cot\phi$$

So $-\tan\theta = \tan(\frac{\pi}{2} - \phi) = -\tan(\phi - \frac{\pi}{2})$
so $\theta = \phi - \frac{\pi}{2}$ or $\phi = \frac{\pi}{2} + \theta$.

Consider the equation $r = a(1 + \cos \theta)$. Because $\cos \theta = \cos(-\theta)$ this curve is symmetrical about the line $\theta = 0$. As θ increases from 0 to π , r decreases from 2a to 0.

$$\begin{split} \frac{dr}{d\theta} &= -a\sin\theta\\ & \text{so } r\frac{d\theta}{dr} = -\frac{1+\cos\theta}{\sin\theta} = -\cot\frac{1}{2}\theta = \tan\phi\\ & \tan\phi = -\cot\frac{1}{2}\theta = \tan\frac{1}{2}(\pi+\theta) \end{split}$$

so
$$\phi = \frac{1}{2}(\pi + \theta)$$

when $\theta = 0$, $\phi = \frac{1}{2}\pi$ so the curve is at right angles to the initial line.

DIAGRAM

when $\psi = 0$, since $\psi = \phi + \theta$ we have $\theta = -\frac{\pi}{3}$.

when $\theta = \frac{\pi}{3}$, $\psi = \pi$ so the highest points are at $\theta = \frac{\pi}{3}$.