Question

Write down the Taylor expansion for e^{x}. Then use Maclaurin's theorem to show that if $0 \leq x \leq 1$ then $e^{x}=1+x+\frac{x^{2}}{2}+R(x)$, where $0 \leq R(x) \leq \frac{1}{6} e^{x}$. Hence show that $1+x+\frac{x^{2}}{2} \leq e^{x} \leq \frac{6}{5}\left(1+x+\frac{x^{2}}{2}\right)$. Use your calculator to evaluate e and check these bounds.

Answer

Taylor expansion of e^{x} around $x=0$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
Remainder term $R_{n}(x)=\frac{x^{n}}{n!} e^{\theta x} \quad 0<\theta<1$
Hence $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} e^{\theta x}$
e^{x} is increasing $0<x<1 \Rightarrow 0 \leq \frac{x^{3}}{6} e^{\theta x} \leq \frac{1}{6} e^{x}$
Hence $1+x+\frac{x^{2}}{2!} \leq e^{x} \leq 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} e^{x}$
Hence $e^{x}\left(1-\frac{x^{3}}{6}\right) \leq 1+x+\frac{x^{2}}{2}$

$$
\begin{aligned}
\Rightarrow e^{x} & \leq \frac{1+x+\frac{x^{2}}{2}}{1-\frac{x^{3}}{6}} \\
\text { if } 0<x<1, \quad 1 & \geq 1-\frac{x^{3}}{6} \geq \frac{5}{6} \\
\text { Hence } \quad 1 & \leq \frac{1}{1-\frac{x^{3}}{6}} \leq \frac{6}{5} \\
\text { Hence } \quad e^{x} & \leq \frac{1+x+\frac{x^{2}}{2}}{1-\frac{x^{3}}{6}} \leq \frac{6}{5}\left(1+x+\frac{x^{2}}{2}\right) \\
\Rightarrow 1+x+\frac{x^{2}}{2} & \leq e^{x} \leq \frac{6}{5}\left(1+x+\frac{x^{2}}{2}\right)
\end{aligned}
$$

Putting $x=1$ gives

$$
1+1+\frac{1}{2} \leq e \leq \frac{6}{5}\left(1+1+\frac{1}{2}\right)
$$

giving $\frac{5}{2} \leq e \leq \frac{6}{5} \times \frac{5}{2}$, i.e. $2.5 \leq e \leq 3$, which is consistent with the value given on the calculator, namely $e=2.71828 \ldots$

