Question

Write down the Taylor expansion for e^x . Then use Maclaurin's theorem to show that if $0 \le x \le 1$ then $e^x = 1 + x + \frac{x^2}{2} + R(x)$, where $0 \le R(x) \le \frac{1}{6}e^x$. Hence show that $1 + x + \frac{x^2}{2} \le e^x \le \frac{6}{5} \left(1 + x + \frac{x^2}{2}\right)$. Use your calculator to evaluate e and check these bounds.

Answer

Taylor expansion of
$$e^{x}$$
 around $x = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
Remainder term $R_{n}(x) = \frac{x^{n}}{n!}e^{\theta x}$ $0 < \theta < 1$
Hence $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}e^{\theta x}$

$$e^{x} \text{ is increasing } 0 < x < 1 \Rightarrow 0 \leq \frac{x^{3}}{6}e^{\theta x} \leq \frac{1}{6}e^{x}$$
Hence $1 + x + \frac{x^{2}}{2!} \leq e^{x} \leq 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}e^{x}$
Hence $e^{x} \left(1 - \frac{x^{3}}{6}\right) \leq 1 + x + \frac{x^{2}}{2}$

$$\Rightarrow e^{x} \leq \frac{1+x+\frac{x^{2}}{2}}{1-\frac{x^{3}}{6}}$$
if $0 < x < 1$, $1 \geq 1-\frac{x^{3}}{6} \geq \frac{5}{6}$

Hence $1 \leq \frac{1}{1-\frac{x^{3}}{6}} \leq \frac{6}{5}$

Hence $e^{x} \leq \frac{1+x+\frac{x^{2}}{2}}{1-\frac{x^{3}}{6}} \leq \frac{6}{5} \left(1+x+\frac{x^{2}}{2}\right)$

$$\Rightarrow 1+x+\frac{x^{2}}{2} \leq e^{x} \leq \frac{6}{5} \left(1+x+\frac{x^{2}}{2}\right)$$

Putting x = 1 gives

$$1+1+\frac{1}{2} \le e \le \frac{6}{5} \left(1+1+\frac{1}{2}\right),$$

giving $\frac{5}{2} \le e \le \frac{6}{5} \times \frac{5}{2}$, i.e. $2.5 \le e \le 3$, which is consistent with the value given on the calculator, namely e = 2.71828...