Question

Use the results that $\dot{\mathbf{e}}_{r}=\dot{\phi} \mathbf{e}_{\phi}$ and $\dot{\mathbf{e}}_{\phi}=-\dot{\phi} \mathbf{e}_{r}$ to show that in polar coordinates the time derivative of the position vector of a particle, $\mathbf{r}=r \mathbf{e}_{r}$, is $\dot{\mathbf{r}}=\dot{r} \mathbf{e}_{r}+r \dot{\phi} \mathbf{e}_{\phi}$

Answer

$\mathbf{v}=\frac{d}{d t}\left(r \mathbf{e}_{r}\right)=\dot{r} \mathbf{e}_{r}+r \dot{\mathbf{e}_{r}}=\dot{r} \mathbf{e}_{r}+r \dot{\phi} \mathbf{e}_{\phi}$

