Question

Show that $c_*(S) \leq C^*(S)$.

Answer

Let S be a bounded set. Suppose there are systems of disjoint rectangles contained within S. Otherwise $c_*(S) = 0$ and the result is trivial.

Lemma If a rectangle R is decomposed by a grid into rectangles $R_1, \dots R_n$ $|R| = \sum |R_n|$

Proof Let the original rectangle be defined by $\{\mathbf{x} : a_i \leq x_i \leq b_i\}$.

Each axis x_i is subdivided by points $x_{i_1}, \dots x_{i_{n_i}}$, so that $a_i = x_{i_1} < x_{i_2} < \dots < x_{i_{n_i}} = b$ Thus we have the system of rectangles defined by $\{\mathbf{x} : x_{ij} \le x_i \le x_{ij+1}\}$, $i = 1, \dots, j = 1, \dots, i-1$ $|R| = \prod_{i=1}^n (b_i - a_i)$ $= \prod_{i=1}^n (x_{i_{n_i}} - x_{i_1})$ $= \prod_{i=1}^n \sum_{j=1}^n (x_{ij+1} - x_{ij})$ $= \sum_{j_i=1}^{n_i-1} \prod_{i=1}^n (x_{ij_i+1} - x_{ij_i})$ $= \sum_{j_i=1}^n |R_i|$

Now let $\{R_i\}$ be an arbitrary finite system of rectangles covering S and let $\{R'_i\}$ be a disjoint system within S. We use all the a_i , b_i , a'_i , b'_i of R_i and R'_i to form a grid . Some of the covering rectangles will contribute more than once to the grid. There will be more members of the grid making up the cover than the linear system. Therefore $\sum |R_i| \supseteq \sum |R'_i|$. Hence the result.