Question

Deduce as many of the following properties as you can from the additive law

i)
$$m(\phi) = 0$$

ii)
$$m(A - B) = m(A) - m(A \cap B)$$

iii)
$$B \subseteq A \Rightarrow m(A - B) = m(A) - m(B)$$

iv)
$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$

v)
$$m(A) \ge 0$$

vi)
$$A \subseteq B \Rightarrow m(A) \le m(B)$$

Answer

The additive law says $A \cap B = \phi \Rightarrow m(A \cup B) = m(A) + m(B)$

i) Put
$$A = B = \phi$$
, then $A \cap B = \phi$, $A \cup B = \phi$. $m(\phi) = m(\phi) + m(\phi)$, therefore $m(\phi) = 0$

ii)
$$A = (A \cap B) \cup (A - B)$$
 $(A \cap B) \cap (A - B) = \phi$
Therefore $m(A) = m(A \cap B) + m(A - B)$
Therefore $m(A - B) = m(A) - m(A \cap B)$

iii)
$$B \subseteq A \Rightarrow A \cap B = B$$

Therefore $m(A - B) = m(A) - m(B)$

iv)
$$A \cup B = A \cup (B - A)$$
 $A \cap (B - A) = \phi$
Therefore $m(A \cup B) = m(A) + m(B - A)$
 $= m(A) + m(B) - m(A \cap B)$

vi)
$$A \subseteq B \Rightarrow m(B) = m(A) + m(B - A)$$

v) We cannot prove
$$m(A) \ge 0$$
, as the following example shows.
$$S = \{a,b\}, \ m(\phi) = 0 \ m(\{a\}) = 1 \ m(\{b\}) = -1$$
 $m(S) = 0$

Then for all
$$A, B \subset S$$
 $A \cap B = \phi \Rightarrow m(A \cup B) = m(A) + m(B)$
But $m(A) \not\geq 0$ for all A .