Question

Prove that a vector equation of the plane containing the point $\mathbf{a} = \mathbf{j} + 2\mathbf{k}$ and which contains the vectors $\mathbf{b} = 2\mathbf{i} - 4\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$ is given by $\mathbf{r} \cdot (-3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 3$.

Find the position vector of the point of intersection of this plane with the line

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} + \mathbf{k}).$$

What is the angle between this position vector and the normal to the plane?

Answer

band**c** lie in a plane.

 $d = \mathbf{a} \cdot \hat{\mathbf{n}}$ where **n** is a unit vector normal to the plane.

A vector normal to the plane is given by $\mathbf{b} \times \mathbf{c}$.

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & 1 \\ 3 & 1 & 5 \end{vmatrix}$$
$$= \mathbf{i} \begin{vmatrix} -4 & 1 \\ 1 & 5 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & -4 \\ 3 & 1 \end{vmatrix}$$
$$= -21\mathbf{i} - 7\mathbf{j} + 14\mathbf{k}.$$

$$\hat{\mathbf{n}} = \frac{-21\mathbf{i} - 7\mathbf{j} + 14\mathbf{k}}{\sqrt{(-21)^2 + (-7)^2 + (14)^2}}$$

$$d = \mathbf{k} \cdot \hat{\mathbf{k}} = (0, +1, 2) \cdot \frac{(-21, -7, 14)}{\sqrt{21^2 + 7^2 + 14^2}}$$
$$= \frac{-7 + 28}{\sqrt{21^2 + 7^2 + 14^2}}$$
$$= \frac{21}{\sqrt{21^2 + 7^2 + 14^2}}$$

Therefore
$$\mathbf{r} \cdot \frac{(-21\mathbf{i} - 7\mathbf{j} + 14\mathbf{k})}{\sqrt{21^2 + 7^2 + 14^2}} = \frac{21}{\sqrt{21^2 + 7^2 + 14^2}}$$
 $\Rightarrow \mathbf{k} \cdot (-3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 3$

Intersection of plane and line is given by
$$\begin{aligned} & [(\mathbf{i}+\mathbf{j}+\mathbf{k})+\lambda(-\mathbf{i}+\mathbf{k})]\cdot(-3\mathbf{i}-\mathbf{j}+2\mathbf{k}) = 3\\ & ((1-\lambda),1,1+\lambda)\cdot(-3,-1,2) = 3\\ & \Rightarrow -3+3\lambda-1+2+2\lambda = 3\\ & \Rightarrow -2+5\lambda = 3\\ & \Rightarrow \underline{\lambda=1} \end{aligned}$$
 Therefore

$$\mathbf{r}_p = \mathbf{i} + \mathbf{j} + \mathbf{k} + 1(-\mathbf{j} + \mathbf{k})$$

= $\mathbf{j} + 2\mathbf{k}$

Angle between this and the normal vector is given by, θ where

$$\mathbf{r}_{p} \cdot \mathbf{n} = |\mathbf{r}_{p}| |\mathbf{n}| \cos \theta$$

$$\mathbf{r}_{p} \cdot \mathbf{n} = (0, 1, 2) \cdot (-3, -1, 2) = 3$$

$$|\mathbf{r}_{p}| = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$$

$$|\mathbf{n}| = \sqrt{3^{2} + 1^{2} + 2^{2}} = \sqrt{14}$$
Therefore $\cos \theta = \frac{3}{\sqrt{5}\sqrt{14}}$

$$\Rightarrow \theta = \arccos\left(\frac{3}{\sqrt{5}\sqrt{14}}\right) = 68.98^{\circ} \approx \underline{69^{\circ}}$$