Question

Prove that a vector equation of the plane containing the point $\mathbf{a}=\mathbf{j}+2 \mathbf{k}$ and which contains the vectors $\mathbf{b}=2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$ and $\mathbf{c}=3 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$ is given by $\mathbf{r} \cdot(-3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=3$.
Find the position vector of the point of intersection of this plane with the line

$$
\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(-\mathbf{i}+\mathbf{k})
$$

What is the angle between this position vector and the normal to the plane?
Answer

\mathbf{b} and \mathbf{c} lie in a plane.
$d=\mathbf{a} \cdot \hat{\mathbf{n}}$ where \mathbf{n} is a unit vector normal to the plane.
A vector normal to the plane is given by $\mathbf{b} \times \mathbf{c}$.

$$
\begin{aligned}
\mathbf{b} \times \mathbf{c} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -4 & 1 \\
3 & 1 & 5
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
-4 & 1 \\
1 & 5
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
2 & 1 \\
3 & 5
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
2 & -4 \\
3 & 1
\end{array}\right| \\
& =-21 \mathbf{i}-7 \mathbf{j}+14 \mathbf{k} .
\end{aligned}
$$

$\hat{\mathbf{n}}=\frac{-21 \mathbf{i}-7 \mathbf{j}+14 \mathbf{k}}{\sqrt{(-21)^{2}+(-7)^{2}+(14)^{2}}}$

$$
\begin{aligned}
d=\mathbf{k} \cdot \hat{\mathbf{k}} & =(0,+1,2) \cdot \frac{(-21,-7,14)}{\sqrt{21^{2}+7^{2}+4^{2}}} \\
& =\frac{-7+28}{\sqrt{21^{2}+7^{2}+14^{2}}} \\
& =\frac{21}{\sqrt{21^{2}+7^{2}+14^{2}}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathbf{r} \cdot \frac{(-21 \mathbf{i}-7 \mathbf{j}+14 \mathbf{k})}{\sqrt{21^{2}+7^{2}+14^{2}}}=\frac{21}{\sqrt{21^{2}+7^{2}+14^{2}}} \\
& \Rightarrow \mathbf{k} \cdot(-3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=3
\end{aligned}
$$

Intersection of plane and line is given by
$[(\mathbf{i}+\mathbf{j}+\mathbf{k})+\lambda(-\mathbf{i}+\mathbf{k})] \cdot(-3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=3$
$((1-\lambda), 1,1+\lambda) \cdot(-3,-1,2)=3$
$\Rightarrow-3+3 \lambda-1+2+2 \lambda=3$
$\Rightarrow-2+5 \lambda=3$
$\Rightarrow \underline{\lambda=1}$
Therefore

$$
\begin{aligned}
\mathbf{r}_{p} & =\mathbf{i}+\mathbf{j}+\mathbf{k}+1(-\mathbf{j}+\mathbf{k}) \\
& =\mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

Angle between this and the normal vector is given by, θ where

$$
\mathbf{r}_{p} \cdot \mathbf{n}=\left|\mathbf{r}_{p}\right||\mathbf{n}| \cos \theta
$$

$\mathbf{r}_{p} \cdot \mathbf{n}=(0,1,2) \cdot(-3,-1,2)=3$
$\left|\mathbf{r}_{p}\right|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$
$|\mathbf{n}|=\sqrt{3^{2}+1^{2}+2^{2}}=\sqrt{14}$
Therefore $\cos \theta=\frac{3}{\sqrt{5} \sqrt{14}}$
$\Rightarrow \theta=\arccos \left(\frac{3}{\sqrt{5} \sqrt{14}}\right)=68.98^{\circ} \approx \underline{69^{\circ}}$

