Question

Calculate

$$
J=\int_{0}^{1} \frac{\cos x}{1+x^{2}} d x
$$

by using
(i) the trapezium rule with 7 ordinates,
(ii) Simpson's rule with 7 ordinates.

Compare your answers with the exact result $J=0.6829 \ldots$.

Answer

$$
J=\int_{0}^{1} \frac{\cos x}{\left(1+x^{2}\right)} d x
$$

(i) Trapezium rule with 7 ordinates:

$$
J \approx \frac{d}{2}\left(y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+2 y_{5}+2 y_{6}+y_{7}\right)
$$

where $d=\frac{1-0}{7-1}=\frac{1}{6}$

$$
\begin{array}{ll}
x_{1}=0 & x_{4}=\frac{3}{6} \\
x_{2}=\frac{1}{6} & x_{5}=\frac{4}{6} \\
x_{3}=\frac{2}{6} & x_{6} \frac{5}{6} \\
& x_{7}=2
\end{array}
$$

$$
y_{i}=f\left(x_{i}\right) ; \quad f(x)=\frac{\cos x}{1+x^{2}}
$$

x	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{5}{6}$	1
y	1.0	0.95949	0.85046	0.70207	0.54408	0.39683	0.27015

$J \approx \frac{1}{12}(1.0+2 \times[0.95949+0.85046+0.70207+0.54408+0.39683]+$ $0.27015)$

$$
\begin{aligned}
J & \approx \frac{1}{12}(1.27015+2 \times 3.45293) \\
& =\frac{1}{12}(1.27015+6.90586) \\
& =\frac{1}{12}(8.17601) \\
& =\underline{0.681334 \ldots}
\end{aligned}
$$

(ii) Simpson's rule with 7 ordinates:
$J \approx \frac{d}{2}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+4 y_{6}+y_{7}\right)$
6 equal segments $\Rightarrow h=\frac{1}{6}$
so we have the same y_{i} as above.
Hence

$$
\begin{aligned}
J \approx & \frac{1}{18}(1.0+4 \times(0.95949+0.70207+0.39683) \\
& +2 \times(0.85046+0.54408)+0.27015) \\
= & \frac{1}{18}(1.27015+0.823356+2.78908) \\
= & \frac{1}{18} \times 12.2928 \\
= & \underline{0.682933 \ldots}
\end{aligned}
$$

Actual=0.6829 to 4sf
(i) is accurate to 0.2% or 2 sf
(ii) is accurate to 4 sf

